Оптическая когерентная томография в диагностике глаукомной оптиконейропатии. Часть 2

Полный текст:


Аннотация

Метод спектральной оптической когерентной томографии (ОКТ, SD-OCT) на сегодня становится основным в ранней диагностике глаукомы. Толщина слоя нервных волокон перипапиллярной сетчатки (RNFL) представляется наиболее надежным клиническим параметром в этом плане. Однако последние данные литературы свидетельствуют о важной роли исследования внутренних слоев макулы, в частности параметров ганглиозного комплекса сетчатки (GCC), объема фокальных (FLV) и глобальных потерь (GLV) для раннего выявления глаукомы. В этом плане исследование ДЗН и решетчатой мембраны склеры пока отстают по диагностической ценности от упомянутых выше показателей. В то же время в центре внимания исследователей - минимальная ширина неврального ободка (minimum rim width, MRW), - новый перспективный параметр в ранней диагностике глаукомы. Применение SD-OCT для определения прогрессирования глаукомы изучено достаточно широко, но до сих пор нет четких клинических рекомендаций. В обзоре приведен сравнительный анализ рассматриваемых методов как для ранней диагностики заболевания, так и для наблюдения в динамике. Отмечены ограничения метода ОКТ в диагностике глаукомы. Показаны преимущества комбинации методов структурной и функциональной оценки.

Об авторе

Н. И. Курышева
Центр офтальмологии ФМБА России; Клиническая больница № 86
Россия


Список литературы

1. Алябьева Ж.Ю., Егоров А.Е. Лазерные сканирующие офтальмоскопы: перспективы их применения в офтальмологии. Вестник офтальмологии 2000; 4:36-38

2. Куроедов А.В., Городничий В.В. Компьютерная ретинотомография (HRT): диагностика, динамика, достоверность. М., 2007; 236 с

3. Курышева Н.И. Глаукомная оптическая нейропатия. Москва: МЕДпресс-информ., 2006

4. Мачехин В.А., Манаенкова Г.Е. Параметры диска зрительного нерва при различных стадиях открытоугольной глаукомы по данным лазерного сканирующего ретинотомографа HRT II. Глаукома 2005; 4:3-10

5. Chiba N., Omodaka K., Yokoyama Y., Aizawa N., Tsuda S., Yasuda M. et al. Association between optic nerve blood flow and objective examinations in glaucoma patients with generalized enlargement disctype. Clin Ophthalmol 2011; 5:1549-1556. doi: 10.2147/ OPTH.S22097.

6. Omodaka K., Nakazawa T., Otomo T., Nakamura M., Fuse N., Nishida K. Correlation between morphology of optic disc determined by Heidelberg Retina Tomograph II and visual function in eyes with open-angle glaucoma. Clin Ophthalmol 2010; 4:765-772. doi.org/10.2147/opth.s9741.

7. Yokoyama Y., Tanito M., Nitta K., Katai M., Kitaoka Y., Omodaka K. et al. Stereoscopic analysis of optic nerve head parameters in primary open angle glaucoma: the glaucoma stereo analysis study. PLoSOne 2014; 9:99-138. doi: 10.1371/journal.pone.0099138.

8. Iliev M.E., Meyenberg A., Garweg J.G. Morphometric assessment of normal, suspect and glaucomatous optic discs with Stratus OCT and HRT II. Eye 2006; 20:1288-1299. doi.org/10.1038/sj.eye.6702101.

9. Ortega J.L., Kakati B., Girkin C.A. Artifacts on the optic nerve head analysis of the optical coherence tomography in glaucomatous and nonglaucomatous eyes. J Glaucoma 2009; 18:186-191. doi.org/ 10.1097/ijg.0b013e31818159cb.

10. Mwanza J.C., Oakley J.D., Budenz D.L., Anderson D.R. Cirrus Optical Coherence Tomography Normative Database Study Group. Ability of cirrus HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes. Ophthalmology 2011; 118:241-248. doi.org/10.1016/j.ophtha.2010.06.036.

11. Sung K.R., Na J.H., Lee Y. Glaucoma diagnostic capabilities of optic nerve head parameters as determined by Cirrus HD optical coherence tomography. J Glaucoma 2012; 21:498-504. doi.org/10.1097/ijg.0b013e318220dbb7.

12. Курышева Н.И., Арджевнишвили Т.Д., Киселева Т.Н., Фомин А.В. Хориоидея при глаукоме: результаты исследования методом оптической когерентной томографии. Национальный журнал глаукома 2013; 4:73-83.

13. Medeiros F.A. How should diagnostic tests be evaluated in glaucoma? Br J Ophthalmol 2007; 91:273-274. doi.org/10.1136/bjo.2006.107409.

14. Kong Y.X., Coote M.A., O’Neill E.C. et al. Glaucomatous optic-neuropathy evaluation project: a standardized internet system for assessing skills in optic disc examination. Clin Exp Ophthalmol 2011; 39:308-17. doi.org/10.1111/j.1442-9071.2010.02462.x.

15. Wong E.Y., Keeffe J.E., Rait J.L. et al. Detection of undiagnosed glaucoma by eye health professionals. Ophthalmology 2004; 111:1508-1514. doi.org/10.1016/j.ophtha.2004.01.029.

16. Rao H.L., Zangwill L.M., Weinreb R.N., Sample P.A., Alencar L.M., Medeiros F.A. Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis. Ophthalmology 2010; 117:1692-1699. doi.org/10.1016/j.ophtha.2010.01.031.

17. Курышева Н.И., Паршунина О.А., Арджевнишвили Т.Д., Иртегова Е.Ю., Киселева Т.Н., Лагутин М.Б. Поиск новых маркеров в ранней диагностике первичной открытоугольной глаукомы. Российский офтальмологический журнал 2015; 8(3):23-30.

18. Bengtsson B., Andersson S., Heijl A. Performance of time-domainand spectral-domain optical coherence tomography for glaucoma screening. Acta Ophthalmologica 2012; 90:310-315. doi.org/10.1111/j.1755-3768.2010.01977.x.

19. Leite M.T., Zangwill L.M., Weinreb R.N. et al. Effect of disease severity on the performance of Cirrus spectral-domain OCT for glaucoma diagnosis. Invest Ophthalmol Vis Sci 2010; 51:41044109. doi.org/10.1167/iovs.09-4716.

20. Jaeschke R., Guyatt G., Sackett D.L. Users’ guides to the medical literature. III. How to use an article about a diagnostic test are the results of the study valid? Avidence-based medicine working group. JAMA 1994; 271:389-391. doi.org/10.1001/jama.271.5.389.

21. van der Schouw Y.T., Verbeek A.L., Ruijs S.H. Guidelines for the assessment of new diagnostic tests. Invest Radiol 1995; 30:334340. doi.org/10.1097/00004424-199506000-00002.

22. Lisboa R., Leite M.T., Zangwill L.M., Tafreshi A., Weinreb R.N., Medeiros F.A. Diagnosing preperimetric glaucoma with spectral domain optical coherence tomography. Ophthalmology 2012; 119:2261-2269. doi.org/10.1016/j.ophtha.2012.06.009.

23. Medeiros F.A., Zangwill L.M., Bowd C., Sample P.A., Weinreb R.N. Use of progressive glaucomatous optic disk change as the reference standard for evaluation of diagnostic tests in glaucoma. Am J Ophthalmol 2005; 139:1010-1018. doi.org/10.1016/j.ajo. 2005.01.003.

24. Lisboa R., Paranhos A., Jr., Weinreb R.N., Zangwill L.M., Leite M.T., Medeiros F.A. Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma. Invest Ophthalmol Vis Sci 2013; 54:3417-3425. doi.org/10.1167/iovs.13-11676.

25. Kim Y.J., Kang M.H., Cho H.Y., Lim H.W., Seong M. Comparative study of macular ganglion cell complex thickness measured by spectral-domain optical coherence tomography in healthy eyes, eyes with preperimetric glaucoma, and eyes with early glaucoma. Jpn J Ophthalmol 2014; 58:244-251. doi.org/10.1007/s10384-014-0315-7.

26. Kim M.J., Jeoung J.W., Park K.H., Choi Y.J., Kim D.M. Topographic profiles of retinal nerve fiber layer defects affect the diagnostic performance of macular scans in preperimetric glaucoma. Invest Ophthalmol Vis Sci 2014; 55:2079-2087. doi.org/10.1167/iovs.13-13506.

27. Mori S., Hangai M., Sakamoto A. et al. Spectral-domain optical coherence tomography measurement of macular volume for diagnosing glaucoma. J Glaucoma 2010; 19:528-534. doi. org/10.1097/ijg.0b013e3181ca7acf.

28. Ojima T., Tanabe T., Hangai M. et al. Measurement of retinal nerve fiber layer thickness and macular volume for glaucoma detection using optical coherence tomography. Jpn J Ophthalmol 2007; 51:197-203. doi.org/10.1007/s10384-006-0433-y.

29. Tan C.S., Ouyang Y., Ruiz H., Sadda S.R. Diurnal variation of choroidal thickness in normal, healthy subjects measured by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 2012; 53:261-266. doi.org/10.1167/iovs.11-8782.

30. Arintawati P., Sone T., Akita T., Tanaka J., Kiuchi Y. The applicability of ganglion cell complex parameters determined from SD-OCT images to detect glaucomatous eyes. J Glaucoma 2013; 22:713-718. doi.org/10.1097/ijg.0b013e318259b2e1.

31. Акопян В.С., Семенова Н.С., Филоненко И.В., Цысарь М.А. Оценка комплекса ганглиозных клеток сетчатки при первичной открытоугольной глаукоме. Офтальмология 2011; 8(1):20-26

32. Artes P.H., Chauhan B.C. Longitudinal changes in the visual field and optic disc in glaucoma. Prog Retin Eye Res 2005; 24:333-354. doi.org/10.1016/j.preteyeres.2004.10.002.

33. Kass M.A., Heuer D.K., Higginbotham E.J. et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the on set of primary open-angle glaucoma. Arch Ophthalmol 2002; 120:701-713. doi.org/10.1001/archopht.120.6.701.

34. Miglior S., Zeyen T., Pfeiffer N. et al. Results of the European glaucoma prevention study. Ophthalmology 2005; 112:366-375. doi.org/10.1016/j.ophtha.2004.11.030.

35. Hood D.C., Anderson S.C., Wall M., Kardon R.H. Structure versus function in glaucoma: an application of a linear model. Invest Ophthalmol Vis Sci 2007; 48(8):3662-3668. doi.org/10.1167/iovs.06-1401.

36. Harwerth R.S., Wheat J.L., Fredette M.J., Anderson D.R. Linking structure and function in glaucoma. Prog Retin Eye Res 2010; 29:249-271.

37. Na J.H., Sung K.R., Baek S. et al. Detection of glaucoma progression by assessment of segmented macular thickness data obtained using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 2012; 53:3817-3826. doi.org/10.1167/iovs.11-9369.

38. Medeiros F.A., Leite M.T., Zangwill L.M. et al. Combining structural and functional measurements to improve detection of glaucoma progression using Bayesian hierarchical models. Invest Ophthalmol Vis Sci 2011; 52:5794-5803. doi.org/10.1167/iovs.10-7111.

39. Meira-Freitas D., Lisboa R., Tatham A. et al. Predicting progression in glaucoma suspects with longitudinal estimates of retinal ganglion cell counts. Invest Ophthalmol Vis Sci 2013; 54:41744183. doi.org/10.1167/iovs.12-11301.

40. Moon B.G., Sung K.R., Cho J.W. et al. Glaucoma progression detection by retinal nerve fiber layer measurement using scanning laser polarimetry: event and trend analysis. Korean J Ophthalmol 2012; 26:174-181. doi.org/10.3341/kjo.2012.26.3.174.

41. Strouthidis N.G., Gardiner S.K., Sinapis C. et al. The spatial pattern of neuro retinal rim loss in ocular hypertension. Invest Ophthalmol Vis Sci 2009; 50:3737-3742. doi.org/10.1167/iovs.08-2844.

42. Nassiri N., Nilforushan N., Coleman A.L. et al. Longitudinal structure-function relationships with scanning laser ophthalmoscopy and standard achromatic perimetry. Arch Ophthalmol 2012; 130:826-832. doi.org/10.1001/archophthalmol.2012.1057.

43. Leung C.K., Liu S., Weinreb R.N., Lai G. et al. Evaluation of retinal nerve fiber layer progression in glaucoma a prospective analysis with neuro retinal rim and visual field progression. Ophthalmology 2011; 118:1551-1557. doi.org/10.1167/iovs.09-3468.

44. Mwanza J.C., Chang R.T., Budenz D.L. et al. Reproducibility of peripapillary retinal nerve fiber layer thickness and optic nerve head parameters measured with cirrus HD-OCT in glaucomatous eyes. Invest Ophthalmol Vis Sci 2010; 51:5724-5730. doi.org/ 10.1167/iovs.10-5222.

45. Эскина Э.Н., Зыкова А.В. Ранние критерии риска развития глаукомы у пациентов с близорукостью. Офтальмология 2014; 11(2):59-63.

46. Na J.H., Sung K.R., Baek S. et al. Detection of glaucoma progression by assessment of segmented macular thickness data obtained using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 2012; 53:3817-3826. doi.org/10.1167/ iovs.11-9369.

47. Wollstein G., Schuman J.S., Price L.L. et al. Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Arch Ophthalmol 2005; 123:464-470. doi.org/10.1001/archopht.123.4.464.

48. Leung C.K., Cheung C.Y., Weinreb R.N. et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology 2009; 116:1257-1263. doi.org/10.1016/j.ophtha.2012.03.044.

49. Medeiros F.A., Zangwill L.M., Alencar L.M. et al. Detection of glaucoma progression with stratus OCT retinal nerve fiber layer, optic nerve head, and macular thickness measurements. Invest Ophthalmol Vis Sci 2009; 50:5741-5748. doi.org/10.1167/iovs.09-3715.

50. Leung C.K., Cheung C.Y., Weinreb R.N. et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis. Invest Ophthalmol Vis Sci 2010; 51:217-222. doi.org/10.1167/iovs.09-3468.

51. Schuman J.S., Pedut-Kloizman T., Hertzmark E. et al. Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology 1996; 103:18891898.13 doi.org/10.1016/s0161-6420(96)30410-7.

52. Leung C.K., Lam S., Weinreb R.N. et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: analysis of the retinal nerve fiber layer map for glaucoma detection. Ophthalmology 2010; 117:1684-1691. doi.org/10.1097/ijg.0b013e3182070684.

53. Dilraj S.G., Mitra S., James D.P., David S. Greenfield and The Advanced Imaging in Glaucoma Study Group, Detection of progressive retinal nerve fiber layer thickness loss with optical coherence tomography using three criteria for functional progression. J Glaucoma 2012; 21(4):214-220. doi: 10.1097/IJG.0b013e3182071cc7.

54. Huang J.Y., Pekmezci M., Mesiwala N., Kao A., Lin S. Diagnostic power of optic disc morphology, peripapillary retinal nerve fiber layer thickness, and macular inner retinal layer thickness in glaucoma diagnosis with fourier-domain optical coherence tomography. J Glaucoma 2011; 20:87-95. doi.org/10.1097/ijg.0b013e3181d787b6.

55. Leung C.K., Chiu V., Weinreb R.N., Liu S. et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a comparison between spectral-domain and time domain optical coherence tomography. Ophthalmology 2011; 118:1558-1562.

56. Budenz D.L., Anderson D.R., Varma R., Schuman J., Cantor L., Savell J., Greenfield D.S., Patella V.M., Quigley H.A., Tielsch J. Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT. Ophthalmology 2007; 114(6):1046-1052. doi.org/10.1016/j.ophtha.2006.08.046.

57. Owen V.M., Strouthidis N.G., Garway-Heath D.F. et al. Measurement variability in Heidelberg Retina Tomograph imaging of neuroretinal rim area. Invest Ophthalmol Vis Sci 2006; 47:53225330. doi.org/10.1167/iovs.06-0096.

58. Leung C.K., Yu M., Weinreb R.N. et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: patterns of retinal nerve fiber layer progression. Ophthalmology 2012; 119:1858-1866. doi.org/10.1016/j.ophtha.2012.03.044.

59. Chauhan B.C., Burgoyne C.F. From clinical examination of the optic disc to clinical assessment of the optic nerve head: a paradigm change. Am J Ophthalmol 2013; 156:218-227. doi.org/10.1016/j.ajo.2013.04.016.

60. Agoumi Y., Sharpe G.P., Hutchison D.M. et al. Laminar and prelaminar tissue displacement during intraocular pressure elevation in glaucoma patient sand healthy controls. Ophthalmology 2011; 118:52-59. doi.org/10.1016/j.ophtha.2010.05.016.

61. Lee E.J., Kim T.W., Weinreb R.N., Suh M.H., Kang M., Park K.H. et al. Three-dimensional evaluation of the lamina cribrosa using spectral-domain optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci 2012; 53:198-204. doi: 10.1167/iovs.11-7848.

62. Wu Z., Xu G., Weinreb R. et al. Optic nerve head deformation in glaucoma: a prospective analysis of optic nerve head surface and lamina cribrosa surface displacement. Ophthalmology 2015; 122(7):1317-1329. doi.org/10.3410/f.725495745.793508053.

63. Reis A.S., O’Leary N., Yang H., Sharpe G.P., Nicolela M.T., Burgoyne C.F., Chauhan B.C. Influence of clinically invisible, but optical coherence tomography detected, optic disc margin anatomy on neuroretinal rim evaluation. Invest Ophthalmol Vis Sci 2012; 53(4):1852-1860. doi: 10.1167/iovs.11-9309.

64. Burgoyne C.F., Downs J.C., Bellezza A.J. et al. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res 2005; 24:39-73. doi.org/10.1016/j.preteyeres.2004.06.001.

65. Sung K.R., Sun J.H., Na J.H. et al. Progression detection capability of macular thickness in advanced glaucomatous eyes. Ophthalmology 2012; 119:308-313. doi.org/10.1016/j.ophtha.2011.08.022.

66. Sung K.R., Wollstein G., Kim N.R. et al. Macular assessment using optical coherence tomography for glaucoma diagnosis. Br J Ophthalmol 2012; 96:1452-1455.

67. Курышева Н.И., Иртегова Е.Ю., Паршунина О.А., Киселева Т.Н., Арджевнишкили Т.Д., Фомин А.В. Новые технологии в диагностике первичной открытоугольной глаукомы. Национальный журнал глаукома 2015; 14(2):22-31

68. Somfai G.M., Salinas H.M., Puliafito C.A., Fernandez D.C. Evaluation of potential image acquisition pitfalls during optical coherence tomography and their influence on retinal image segmentation. J Biomed Opt 2007; 12:412-419. doi.org/10.1117/1.2774827.

69. Han I.C., Jaffe G.J. Evaluation of artifacts associated with macular spectral-domain optical coherence tomography. Ophthalmology 2010; 117:1177-1189. doi.org/10.1016/j.ophtha.2009.10.029.

70. Melo G.B., Libera R.D., Barbosa A.S., Pereira L.M., Doi L.M., Melo L.A. Comparison of optic disk and retinal nerve fiber layer thickness in nonglaucomatous and glaucomatous patients with high myopia. Am J Ophthalmol 2006; 142:858-860. doi.org/10.1016/j.ajo.2006.05.022.

71. Lee E.J., Kim T.W., Park K.H., Seong M., Kim H., Kim D.M. Ability of Stratus OCT to detect progressive retinal nerve fiber layer atrophy in glaucoma. Invest Ophthalmol Vis Sci 2009; 50:662-668. doi.org/10.1167/iovs.08-1682.

72. Nouri-Mahdavi K., Nikkhou K., Hoffman D.C., Law S.K., Caprioli J. Detection of early glaucoma with optical coherence tomography (Stratus OCT). J Glaucoma 2008; 17:183-188. doi.org/10.1097/ ijg.0b013e31815768c4.

73. Nouri-Mahdavi K., Zarei R., Caprioli J. Influence of visual field testing frequency on detection of glaucoma progression with trend analyses. Arch Ophthalmol 2011; 129:1521-1527. doi.org/10. 1001/archophthalmol.2011.224.

74. Chauhan B.C., Garway-Heath D.F., Goni F.J. et al. Practical recommendations for measuring rates of visual field change in glaucoma. Br J Ophthalmol 2008; 92:569-573. doi.org/10.1136/bjo.2007.135012.

75. Caprioli J. Discrimination between normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 1992; 33:153-159.

76. Caprioli J. Clinical evaluation of the optic nerve in glaucoma. Trans Am Ophthalmol Soc 1994; 92:589-641.

77. Shah N.N., Bowd C., Medeiros F.A. et al. Combining structural and functional testing for detection of glaucoma. Ophthalmology 2006; 113:1593-1602. doi.org/10.1016/j.ophtha.2006.06.004.

78. Cho J.W., Sung K.R., Lee S. et al. Relationship between visual field sensitivity and macular ganglion cell complex thickness as measured by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2010; 51:6401-6407. doi.org/10.1167/iovs.09-5035.

79. Kim N.R., Lee E.S., Seong G.J., Kim J.H., An H.G., Kim C.Y. Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma. Invest Ophthalmol Vis Sci 2010; 51:4646-4651. doi.org/10.1167/iovs.09-5053


Дополнительные файлы

Для цитирования: Курышева Н.И. Оптическая когерентная томография в диагностике глаукомной оптиконейропатии. Часть 2. Национальный журнал глаукома. 2016;15(3):60-70.

For citation: Kurysheva N.I. Optical coherence tomography in glaucoma optic neuropathy diagnostics. Part 2. National Journal glaucoma. 2016;15(3):60-70. (In Russ.)

Просмотров: 502

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)