Preview

Национальный журнал глаукома

Расширенный поиск

Ганглиозные клетки сетчатки: возможности нейропротекции при глаукоме

Полный текст:

Аннотация

Нейропротекторная терапия является современным и одним из наиболее перспективных направлений в лечении глаукомы. Эта стратегия подразумевает защиту сетчатки, а также волокон зрительного нерва от повреждающего действия различных факторов. Клеточная терапия постепенно находит практическое применение почти во всех областях клинической медицины, в том числе и в офтальмологии. Считается, что положительное влияние трансплантации клеток обусловлено нескольки- ми механизмами, одним из которых является трофический, поэтому одним из важных аспектов нейропротекции при глаукоме является коррекция метаболического стресса клеток сетчатки.

В обзоре анализируется современное состояние вопроса изучения ганглиозных клеток сетчатки как мишени для терапии глаукомы, дается представление о новых подходах к лечению этого заболевания с использованием клеточных технологий на основе стратегии нейропротекции. 

Об авторах

А. Н. Габашвили
ФГБНУ «Научно-исследовательский институт глазных болезней»
Россия

к.б.н., научный сотрудник лаборатории фундаментальных исследований в офтальмологии,

119021,  Москва, ул. Россолимо, 11А, Б



В. П. Еричев
ФГБНУ «Научно-исследовательский институт глазных болезней»
Россия

д.м.н., профессор, руководитель отдела глаукомы,

119021,  Москва, ул. Россолимо, 11А, Б



Т. В. Нестерова
ФГБНУ «Научно-исследовательский институт глазных болезней»
Россия

лаборант-исследователь лаборатории фундаментальных исследований в офтальмологии,

119021,  Москва, ул. Россолимо, 11А, Б



А. М. Суббот
ФГБНУ «Научно-исследовательский институт глазных болезней»
Россия

к.м.н., старший научный сотрудник лаборатории фундаментальных исследований в офтальмологии,

119021,  Москва, ул. Россолимо, 11А, Б



Список литературы

1. Kingman S. Glaucoma is second leading cause of blindness globally. Bull World Health Organ 2004; 82(11):887-888. doi: S0042-96862004001100019.

2. Quigley H.A., Broman A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006; 90(3):262-267. doi: 10.1136/bjo.2005.081224.

3. Blanco A.A., Bagnasco L., Bagnis A., Barton K., Baudouin C., Bengtsson B. et al. Terminology and Guidelines For Glaucoma. 4th edition. 2014: European Glaucoma Society.

4. Kaushik S., Pandav S.S., Ram J. Neuroprotection in glaucoma. J Postgrad Med 2003; 49(1):90-95.

5. Chang E.E., Goldberg J.L. Glaucoma 2.0: neuroprotection, neuroregeneration, neuroenhancement. Ophthalmology 2012; 119(5): 979-986. doi: 10.1016/j.ophtha.2011.11.003.

6. Dielemans I., Vingerling J.R., Wolfs R.C., Hofman A., Grobbee D.E., de Jong P.T. The prevalence of primary open-angle glaucoma in a population-based study in The Netherlands. The Rotterdam Study. Ophthalmology 1994; 101(11):1851-1855.

7. Watson A.B. A formula for human retinal ganglion cell receptive field density as a function of visual field location. J Vis 2014; 14(7). doi: 10.1167/14.7.15.

8. Villegas G.M. Electron microscopic study of the vertebrate retina. J Gen Physiol 1960; 43(6)Suppl: 15-43.

9. Pacal M., Bremner R. Induction of the ganglion cell differentiation program in human retinal progenitors before cell cycle exit. Dev Dyn 2014; 243(5):712-729. doi: 10.1002/dvdy.24103.

10. Provis J.M., Billson F.A., Russell P. Ganglion cell topography in human fetal retinae. Invest Ophthalmol Vis Sci 1983; 24(9):1316-1320.

11. Radius R.L., Anderson D.R. The histology of retinal nerve fiber layer bundles and bundle defects. Arch Ophthalmol 1979; 97(5):948-950.

12. Provis J.M., van Driel D., Billson F.A., Russell P. Development of the human retina: patterns of cell distribution and redistribution in the ganglion cell layer. J Comp Neurol 1985; 233(4):429-451. doi: 10.1002/cne.902330403.

13. FitzGibbon T. The human fetal retinal nerve fiber layer and optic nerve head: a DiI and DiA tracing study. Vis Neurosci 1997; 14(3):433-447.

14. Harman A., Abrahams B., Moore S., Hoskins R. Neuronal density in the human retinal ganglion cell layer from 16-77 years. Anat Rec 2000; 260(2):124-131.

15. Jonas J.B., Muller-Bergh J.A., Schlotzer-Schrehardt U.M., Naumann G.O. Histomorphometry of the human optic nerve. Invest Ophthalmol Vis Sci 1990; 31(4):736-744.

16. Vrabec F. The temporal raphe of the human retina. Am J Ophthalmol 1966; 62(5):926-938.

17. Barnstable C.J., Drager U.C. Thy-1 antigen: a ganglion cell specific marker in rodent retina. Neuroscience 1984; 11(4):847-855.

18. Badea T.C., Cahill H., Ecker J., Hattar S., Nathans J. Distinct roles of transcription factors brn3a and brn3b in controlling the development, morphology, and function of retinal ganglion cells. Neuron 2009; 61(6):852-864. doi: 10.1016/j.neuron.2009.01.020.

19. Rodriguez A.R., de Sevilla Muller L.P., Brecha N.C. The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina. J Comp Neurol 2014; 522(6):1411-1443. doi: 10.1002/cne.23521.

20. Kuffler S.W. Discharge patterns and functional organization of mammalian retina. J Neurophysiol 1953; 16(1):37-68.

21. Famiglietti E.V. Jr., Kaneko A., Tachibana M. Neuronal architecture of on and off pathways to ganglion cells in carp retina. Science 1977; 198(4323):1267-1269.

22. Famiglietti E.V., Jr., Kolb H. Structural basis for ON-and OFF-center responses in retinal ganglion cells. Science 1976; 194(4261):193-195.

23. Karten H.J., Brecha N. Localization of neuroactive substances in the vertebrate retina: evidence for lamination in the inner plexiform layer. Vis Res 1983; 23(10):1197-1205.

24. Roska B.M.M. The retina dissects the visual scene in distinct features. The New Visual Neurosciences 2014:163-182.

25. Kwong J.M., Caprioli J., Piri N. RNA binding protein with multiple splicing: a new marker for retinal ganglion cells. Invest Ophthalmol Vis Sci 2010; 51(2):1052-1058. doi: 10.1167/iovs.09-4098.

26. Hornberg H., Wollerton-van Horck F., Maurus D., Zwart M., Svoboda H., Harris W.A. et al. RNA-binding protein Hermes/RBPMS inversely affects synapse density and axon arbor formation in retinal ganglion cells in vivo. J Neurosci 2013; 33(25):10384-10395. doi: 10.1523/JNEUROSCI.5858-12.2013.

27. Kemshead J.T., Ritter M.A., Cotmore S.F., Greaves M.F. Human Thy-1: expression on the cell surface of neuronal and glial cells. Brain Res 1982; 236(2):451-461.

28. Ahmed F., Brown K.M., Stephan D.A., Morrison J.C., Johnson E.C., Tomarev S.I. Microarray analysis of changes in mRNA levels in the rat retina after experimental elevation of intraocular pressure. Invest Ophthalmol Vis Sci 2004; 45(4):1247-1258.

29. Badea T.C., Nathans J. Morphologies of mouse retinal ganglion cells expressing transcription factors Brn3a, Brn3b, and Brn3c: analysis of wild type and mutant cells using genetically-directed sparse labeling. Vision Res 2011; 51(2):269-279. doi: 10.1016/j.visres.2010.08.039.

30. Xiang M., Zhou L., Macke J.P., Yoshioka T., Hendry S.H., Eddy R.L. et al. The Brn-3 family of POU-domain factors: primary structure, binding specificity, and expression in subsets of retinal ganglion cells and somatosensory neurons. J Neurosci 1995; 15(7 Pt 1):4762-4785.

31. Itskovitz-Eldor J., Schuldiner M., Karsenti D., Eden A., Yanuka O., Amit M. et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 2000; 6(2):88-95.

32. Reynolds B.A., Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992; 255(5052):1707-1710.

33. Kahn A.J. Ganglion cell formation in the chick neural retina. Brain Res 1973; 63:285-290.

34. de Iongh R., McAvoy J.W. Spatio-temporal distribution of acidic and basic FGF indicates a role for FGF in rat lens morphogenesis. Dev Dyn 1993; 198(3):190-202. doi: 10.1002/aja.1001980305.

35. Patel A., McFarlane S. Overexpression of FGF-2 alters cell fate specification in the developing retina of Xenopus laevis. Dev Biol 2000; 222(1):170-180. doi: 10.1006/dbio.2000.9695.

36. Meyer-Franke A., Kaplan M.R., Pfrieger F.W., Barres B.A. Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron 1995; 15(4):805-819.

37. Zuber M.E., Gestri G., Viczian A.S., Barsacchi G., Harris W.A. Specification of the vertebrate eye by a network of eye field transcription factors. Development 2003; 130(21):5155-5167. doi: 10.1242/dev.00723.

38. Lan L., Vitobello A., Bertacchi M., Cremisi F., Vignali R., Andreazzoli M., et al. Noggin elicits retinal fate in Xenopus animal cap embryonic stem cells. Stem Cells 2009; 27(9):2146-2152. doi: 10.1002/stem.167.

39. Ouchi Y., Tabata Y., Arai K., Watanabe S. Negative regulation of retinal-neurite extension by beta-catenin signaling pathway. J Cell Sci 2005; 118(Pt 19):4473-4483. doi: 10.1242/jcs.02575.

40. Chen M., Chen Q., Sun X., Shen W., Liu B., Zhong X. et al. Generation of retinal ganglion-like cells from reprogrammed mouse fibroblasts. Invest Ophthalmol Vis Sci 2010; 51(11):5970-5978. doi: 10.1167/iovs.09-4504.

41. Suzuki N., Shimizu J., Takai K., Arimitsu N., Ueda Y., Takada E. et al. Establishment of retinal progenitor cell clones by transfection with Pax6 gene of mouse induced pluripotent stem (iPS) cells. Neurosci Lett 2012; 509(2):116-120. doi: 10.1016/j.neulet.2011.12.055.

42. Parameswaran S., Balasubramanian S., Babai N., Qiu F., Eudy J.D., Thoreson W.B. et al. Induced pluripotent stem cells generate both retinal ganglion cells and photoreceptors: therapeutic implications in degenerative changes in glaucoma and age-related macular degeneration. Stem Cells 2010; 28(4):695-703. doi: 10.1002/stem.320.

43. Aoki H., Hara A., Niwa M., Motohashi T., Suzuki T., Kunisada T. Transplantation of cells from eye-like structures differentiated from embryonic stem cells in vitro and in vivo regeneration of retinal ganglion-like cells. Graefes Arch Clin Exp Ophthalmol 2008; 246(2):255-265. doi: 10.1007/s00417-007-0710-6.

44. Jagatha B., Divya M.S., Sanalkumar R., Indulekha C.L., Vidyanand S., Divya T.S. et al. In vitro differentiation of retinal ganglion-like cells from embryonic stem cell derived neural progenitors. Biochem Biophys Res Commun 2009; 380(2): 230-235. doi: 10.1016/j.bbrc.2009.01.038.

45. Lamba D.A., Karl M.O., Ware C.B., Reh T.A. Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci USA 2006; 103(34):12769-12774. doi: 10.1073/pnas.0601990103.

46. Kayama M., Kurokawa M.S., Ueda Y., Ueno H., Kumagai Y., Chiba S. et al. Transfection with pax6 gene of mouse embryonic stem cells and subsequent cell cloning induced retinal neuron progenitors, including retinal ganglion cell-like cells, in vitro. Ophthalmic Res 2010; 43(2):79-91. doi: 10.1159/000247592.

47. Tabata Y., Ouchi Y., Kamiya H., Manabe T., Arai K., Watanabe S. Specification of the retinal fate of mouse embryonic stem cells by ectopic expression of Rx/rax, a homeobox gene. Mol Cell Biol 2004; 24(10):4513-4521.

48. Krishnamoorthy R.R., Agarwal P., Prasanna G., Vopat K., Lambert W., Sheedlo H.J. et al. Characterization of a transformed rat retinal ganglion cell line. Brain Res Mol Brain Res 2001; 86(1-2):1-12.

49. Van Bergen N.J., Wood J.P., Chidlow G., Trounce I.A., Casson R.J., Ju W.K. et al. Recharacterization of the RGC-5 retinal ganglion cell line. Invest Ophthalmol Vis Sci 2009; 50(9):4267-4272. doi: 10.1167/iovs.09-3484.

50. Winzeler A., Wang J.T. Purification and culture of retinal ganglion cells from rodents. Cold Spring Harb Protoc 2013; 2013(7): 643-652. doi: 10.1101/pdb.prot074906.

51. Barres B.A., Silverstein B.E., Corey D.P., Chun L.L. Immunological, morphological, and electrophysiological variation among retinal ganglion cells purified by panning. Neuron 1988; 1(9):791-803.

52. Shoge K., Mishima H.K., Mukai S., Shinya M., Ishihara K., Kanno M. et al. Rat retinal ganglion cells culture enriched with the magnetic cell sorter. Neurosci Lett 1999; 259(2):111-114.

53. Hong S., Iizuka Y., Kim C.Y., Seong G.J. Isolation of primary mouse retinal ganglion cells using immunopanning-magnetic separation. Mol Vis 2012; 18:2922-2930.

54. Chintalapudi S.R., Djenderedjian L., Stiemke A.B., Steinle J.J., Jablonski M.M., Morales-Tirado V.M. Isolation and molecular profiling of primary mouse retinal ganglion cells: comparison of phenotypes from healthy and glaucomatous retinas. Front Aging Neurosci 2016; 8:93. doi: 10.3389/fnagi.2016.00093.

55. Amos P.J., Cagavi Bozkulak E., Qyang Y. Methods of cell purification: a critical juncture for laboratory research and translational science. Cells Tissues Organs 2012; 195(1-2):26-40. doi: R01 HL083895-0510.1159/000331390.

56. Takahashi N., Cummins D., Caprioli J. Rat retinal ganglion cells in culture. Exp Eye Res 1991; 53(5):565-572.

57. Romano C., Hicks D. Adult retinal neuronal cell culture. Prog Retin Eye Res 2007; 26(4):379-397. doi: 10.1016/j.preteyeres.2007.03.001.

58. Kumar N., Borth N. Flow-cytometry and cell sorting: an efficient approach to investigate productivity and cell physiology in mammalian cell factories. Methods 2012; 56(3):366-374. doi: 10.1016/j.ymeth.2012.03.004.

59. Fang J.H., Wang X.H., Xu Z.R., Jiang F.G. Neuroprotective effects of bis(7)-tacrine against glutamate-induced retinal ganglion cells damage. BMC Neurosci 2010; 11:31. doi: 10.1186/1471-2202-11-31.

60. Li J.B., Lu Z.G., Xu L., Wang Q., Zhang Z.H., Fang J.H. Neuroprotective effects of bis(7)-tacrine in a rat model of pressure-induced retinal ischemia. Cell Biochem Biophys 2014; 68(2):275-282. doi: 10.1007/s12013-013-9707-4.

61. Mayama C. Calcium channels and their blockers in intraocular pressure and glaucoma. Eur J Pharmacol 2014; 739:96-105. doi: 10.1016/j.ejphar.2013.10.073.

62. Oz M., Lorke D.E., Yang K.H., Petroianu G. On the interaction of beta-amyloid peptides and alpha7-nicotinic acetylcholine receptors in Alzheimer’s disease. Curr Alzheimer Res 2013; 10(6):618-630.

63. Wehrwein E., Thompson S.A., Coulibaly S.F., Linn D.M., Linn C.L. Acetylcholine protection of adult pig retinal ganglion cells from glutamate-induced excitotoxicity. Invest Ophthalmol Vis Sci 2004; 45(5):1531-1543.

64. Thompson S.A., Smith O., Linn D.M., Linn C.L. Acetylcholine neuroprotection against glutamate-induced excitotoxicity in adult pig retinal ganglion cells is partially mediated through alpha4 nAChRs. Exp Eye Res 2006; 83(5):1135-1145. doi: 10.1016/j.exer.2006.05.022.

65. Iwamoto K., Mata D., Linn D.M., Linn C.L. Neuroprotection of rat retinal ganglion cells mediated through alpha7 nicotinic acetylcholine receptors. Neuroscience 2013; 237:184-198. doi: 10.1016/j.neuroscience.2013.02.003.

66. Roberti G., Tanga L., Michelessi M., Quaranta L., Parisi V., Manni G., et al. Cytidine 5’-diphosphocholine (citicoline) in glaucoma: rationale of its use, current evidence and future perspectives. Int J Mol Sci 2015; 16(12):28401-28417. doi: 10.3390/ijms161226099.

67. Doozandeh A., Yazdani S. Neuroprotection in Glaucoma. J Ophthalmic Vis Res 2016; 11(2):209-220. doi: 10.4103/2008-322X.183923.

68. Liu Y., Tao L., Fu X., Zhao Y., Xu X. BDNF protects retinal neurons from hyperglycemia through the TrkB/ERK/MAPK pathway. Mol Med Rep 2013; 7(6):1773-1778. doi: 10.3892/mmr.2013.1433.

69. Kalbermatten D.F., Schaakxs D., Kingham P.J., Wiberg M. Neurotrophic activity of human adipose stem cells isolated from deep and superficial layers of abdominal fat. Cell Tissue Res 2011; 344(2):251-260. doi: 10.1007/s00441-011-1142-5.

70. Martens W., Sanen K., Georgiou M., Struys T., Bronckaers A., Ameloot M. et al. Human dental pulp stem cells can differentiate into Schwann cells and promote and guide neurite outgrowth in an aligned tissue-engineered collagen construct in vitro. FASEB J 2014; 28(4):1634-1643. doi: 10.1096/fj.13-243980.

71. Mead B., Logan A., Berry M., Leadbeater W., Scheven B.A. Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: comparison with human bone marrow and adipose-derived mesenchymal stem cells. PLoS One 2014; 9(10):e109305. doi: 10.1371/journal.pone.0109305.

72. Oner A., Gonen Z.B., Sinim N., Cetin M., Ozkul Y. Subretinal adipose tissue-derived mesenchymal stem cell implantation in advanced stage retinitis pigmentosa: a phase I clinical safety study. Stem Cell Res Ther 2016; 7(1):178. doi: 10.1186/s13287-016-0432-y.

73. Prokosch V., Panagis L., Volk G.F., Dermon C., Thanos S. Alpha2-adrenergic receptors and their core involvement in the process of axonal growth in retinal explants. Invest Ophthalmol Vis Sci 2010; 51(12):6688-6699. doi: 10.1167/iovs.09-4835.

74. Kalapesi F.B., Coroneo M.T., Hill M.A. Human ganglion cells express the alpha-2 adrenergic receptor: relevance to neuroprotection. Br J Ophthalmol 2005; 89(6):758-763. doi: 10.1136/bjo.2004.053025.

75. Dong C.J., Guo Y., Agey P., Wheeler L., Hare W.A. Alpha2-adrenergic modulation of NMDA receptor function as a major mechanism of RGC protection in experimental glaucoma and retinal excitotoxicity. Invest Ophthalmol Vis Sci 2008; 49(10):4515-4522. doi: 10.1167/iovs.08-2078.

76. de Lima S., Koriyama Y., Kurimoto T., Oliveira J.T., Yin Y., Li Y., et al. Full-length axon regeneration in the adult mouse optic nerve and partial recovery of simple visual behaviors. Proc Natl Acad Sci USA 2012; 109(23):9149-9154. doi: 10.1073/pnas.1119449109.

77. Kuno N., Fujii S. Biodegradable intraocular therapies for retinal disorders: progress to date. Drugs Aging 2010; 27(2):117-134. doi: 10.2165/11530970-000000000-00000.

78. Emerich D.F., Thanos C.G. NT-501: an ophthalmic implant of polymer-encapsulated ciliary neurotrophic factor-producing cells. Curr Opin Mol Ther 2008; 10(5):506-515.

79. Cho J.H., Mao C.A., Klein W.H. Adult mice transplanted with embryonic retinal progenitor cells: new approach for repairing damaged optic nerves. Mol Vis 2012; 18:2658-2672.

80. Harper M.M., Grozdanic S.D., Blits B., Kuehn M.H., Zamzow D., Buss J.E. et al. Transplantation of BDNF-secreting mesenchymal stem cells provides neuroprotection in chronically hypertensive rat eyes. Invest Ophthalmol Vis Sci 2011; 52(7):4506-4515. doi: 10.1167/iovs.11-7346.


Для цитирования:


Габашвили А.Н., Еричев В.П., Нестерова Т.В., Суббот А.М. Ганглиозные клетки сетчатки: возможности нейропротекции при глаукоме. Национальный журнал глаукома. 2017;16(2):74-81.

For citation:


Gabashvili A.N., Erichev V.P., Nesterova T.N., Subbot A.M. Retinal ganglion cells: potentiality for neuroprotective glaucoma treatment. National Journal glaucoma. 2017;16(2):74-81. (In Russ.)

Просмотров: 400


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)