Vascular theory of the glaucomatous optic neuropathy pathogenesis: rationale in terms of ocular blood flow anatomy and physiology. Part 1
Abstract
The review presents data on ocular blood flow anatomy and physiology that is directly related to glaucoma pathogenesis. Specifics of the ocular arterial, venous and capillary vascular bed have been comprehensively examined. Differences in blood supply to different parts of the optic nerve have been pointed out with particular focus on the fact that the posterior ciliary arteries are the only source of blood supply to the prelaminar and lamina cribrosa zones of the optic nerve, as well as the major source of blood supply to the retrolaminar zone. The amount and location of posterior ciliary arteries are individual. Particular attention has been paid to the comparison of retinal and choroidal blood flow with an emphasis on the regulation of these two sources of blood supply to the retina and optic nerve. The characteristic of “watershed areas”, which explain the features of the visual field defects in glaucoma, has been given. Features of the hemato-ophthalmic barrier, in particular the role of retinal capillaries and the retinal pigment epithelium, have been discussed. It is pointed out that the blood-optic nerve barrier, which is strong in all zones of the optic nerve, is nevertheless permeable in the optic nerve’s prelaminar zone.
About the Author
N. I. KuryshevaRussian Federation
Med.Sc.D., Professor, Head of the Diagnostic Department
References
1. Chobanian A.V., Bakris G.L., Black H.R. National Heart, Lung, and Blood Institute Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure; National High Blood Pressure Education Program Coordinating Committee. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. doi: 10.1161/01. HYP.0000107251.49515.c2.
2. Deokule S., Weinreb R.N. Relationships among systemic blood pressure, intraocular pressure, and open-angle glaucoma. Can J Ophthalmol 2008; 43:302-307. doi: http://dx.doi.org/10.3129/ i08-061.
3. Chauhan B.C., Mikelberg F.S., Balaszi A.G., LeBlanc R.P., Lesk M.R., Trope G.E.; Canadian Glaucoma Study Group. Canadian Glaucoma Study: 2. Risk factors for the progression of open-angle glaucoma. Arch Ophthalmol 2008; 126:1030-1036. doi: 10.1001/archopht.126.8.1030.
4. Plange N., Kaup M., Daneljan L., Predel H.G., Remky A., Arend O. 24-h blood pressure monitoring in normal tension glaucoma: night-time blood pressure variability. J Hum Hypertens 2006; 20:137-142. doi: 10.1038/sj.jhh.1001959.
5. Bonomi L., Marchini G., Marraffa M., Bernardi P., Morbio R., Varotto A. Vascular risk factors for primary open-angle glaucoma: the Egna-Neumarkt Study. Ophthalmology 2000; 107:1287-1293. doi: 10.1016/S0161-6420(00)00138-X.
6. Mitchell P., Lee A.J., Wang J.J., Rochtchina E. Intraocular pressure over the clinical range of blood pressure: Blue Mountains Eye Study findings. Am J Ophthalmol 2005; 140:131-132. doi: 10.1016/j.ajo.2004.12.088.
7. Orzalesi N., Rossetti L., Omboni S. Vascular risk factors in glaucoma: the results of a national survey. Graefes Arch Clin Exp Ophthalmol 2007; 245:795–802. doi: 10.1007/s00417-006-0457-5.
8. Collignon N., Dewe W., Guillaume S., Collignon-Brach J. Ambulatory blood pressure monitoring in glaucoma patients. The nocturnal systolic dip and its relationship with disease progression. Int Ophthalmol 1998; 22:19–25. doi: 10.1023/A:1006113109864.
9. Tokunaga T., Kashiwagi K., Tsumura T., Taguchi K., Tsukahara S. Association between nocturnal blood pressure reduction and progression of visual field defect in patients with primary open-angle glaucoma or normaltension glaucoma. Jpn J Ophthalmol 2004; 48:380–385. doi: 10.1007/s10384-003-0071-6.
10. Graham S.L., Drance S.M. Nocturnal hypotension: role in glaucoma progression. Surv Ophthalmol 1999; 43(1):10-16. doi: 10.1016/S0039-6257(99)00016-8.
11. Leske M.C. Ocular perfusion pressure and glaucoma: clinical trial and epidemiologic findings. Curr Opin Ophthalmol 2009; 20:73-78. doi: 10.1097/icu.0b013e32831eef82.
12. Caprioli J., Coleman A.L. Blood Flow in Glaucoma Discussion. Blood pressure, perfusion pressure, and glaucoma. Am J Ophthalmol 2010; 149(5):704-12. doi: 10.1016/j.ajo.2010.01.018.
13. Quigley H., Addicks E. Optic nerve damage in human glaucoma. The sit of injury and susceptibility to damade. Arch Ophthalmol 1981; 99(4):635-649. doi:10.1001/archopht.1981. 03930010635009. 14. Hayreh S.S. Ischemic optic neuropathies. Springer, 2011. 456 р.
14. Rusia D., Harris A., Pernic A. et al. Feasibility of creating a normative database of colour doppler imaging parameters in glaucomatous eyes and controls. Br J Ophthalmol 2011; 95:1193-1198. doi: 10.1136/bjo.2010.188219.
15. Kawasaki R., Wang J.J., Rochtchina E., Lee A.J., Wong T.Y., Mitchell P. Retinal vessel caliber is associated with the 10-year incidence of glaucoma: the Blue Mountains Eye Study. Ophthalmology 2013; 120:84-90. doi: 10.1016/j.ophtha.2012.07.007.
16. Курышева Н.И. Глазная гемоперфузия и глаукома. М.: Гринлайт, 2014; 128 с. [Kurisheva N.I. Glaznaya gemoperfuziya i glaukoma [Eye hemoperfusion and glaucoma]. Moscow, Grenlight Publ., 2014. 128 p. (In Russ.)].
17. Hommer A., Fuchsjager-Mayrl G., Resch H., Vass C., Garhofer G., Schmetterer L. Estimation of ocular rigidity based on measurement of pulse amplitude using pneumotonometry and fundus pulse using laser interferometry in glaucoma. Invest Ophthalmol Vis Sci 2008; 49:4046-4050. doi:10.1167/iovs.07-1342.
18. Sigal I.A., Ethier C.R. Biomechanics of the optic nerve head. Exp Eye Res 2009; 88:799-807. doi: 10.1016/j.exer.2009.02.003.
19. Burgoyne C.F. A biomechanical paradigm for axonal insult within the optic nerve head in aging and glaucoma. Exp Eye Res 2011; 93:120-132. doi:10.1016/j.exer.2010.09.005.
20. Волков В.В. О вероятных механизмах нарушения зрительных функций при глаукоме. В кн.: Актуальные проблемы офтальмологии. Научные труды, посвященные 100-летию М.И. Авербаха. Москва, 1974; 45-54. [Volkov V.V. On probable mechanisms of infringement of visual functions in glaucoma. In: Actual problems of ophthalmology. Scientific works dedicated to the 100th anniversary M.I. Averbakh. Moscow, 1974; 45-54. (In Russ.)].
21. Jonas J., Berenshtein E., Holbach L. Lamina cribrosa thickness and spatial relationships between intraocular space and cerebrospinal fluid space in highly myopic eyes. Invest Ophthalmol Vis Sci 2004; 45:2660-2665. doi: 10.1167/iovs.03-1363.
22. Siesky B., Harris A., Amireskandari A. Glaucoma and ocular blood flow: an anatomical perspective. Expert Review of Ophthalmology 2014; 7(4):325-340. doi:10.1586/eop.12.41.
23. Kyhn M.V., Warfvinge K., Scherfig E. Acute retinal ischemia caused by controlled low ocular perfusion pressure in a porcine model. Electrophysiological and histological characterisation. Exp Eye Res 2009; 88(6):1100–1106. doi: 10.1016/j.exer.2009.01.016.
24. Morgan J.E. Retina ganglion cell degeneration in glaucoma: an opportunity missed? A review. Clin Exper Ophthalmol 2012; 40:364-368. doi:10.1111/j.1442-9071.2012.02789.x.
25. Balaratnasingam C., Morgan W.H., Bass L., Kang M., Cringle S.J., Yu D.Y. Time-dependent effects of focal retinal ischemia on axonal cytoskeleton proteins. Invest Ophthalmol Vis Sci 2010; 51(6): 3019-3028. doi:10.1167/iovs.09-4692.
26. Harris A., Jonescu-Cuypers C.P., Kagemann L. Atlas of ocular blood flow: vascular anatomy, pathophysiology, and metabolism. Butterworth Heinemann Publishers, PA, 2003.
27. Ducournau D. Systematisation vasculaire de la choroide. Lyon: Association Corporative des Etudiants en Medecine de Lyon. 1979:17-22.
28. Sato Y., Tomita G., Onda E., Goto Y., et al. Association between watershed zone and visual field defect in normal tension glaucoma. Jpn J Ophthalmol 2000; 44(1):39-45. D doi:10.1016/s0021- 5155(99)00148-3.
29. Schmidl D., Garhofer G., Schmettere L. The complex interaction between ocular perfusion pressure and ocular blood flow — Relevance for glaucoma. Exp Eye Res 2011; 93:141-155. doi:10.1016/j. exer.2010.09.002.
30. Курышева Н.И., Арджевнишвили Т.Д., Киселева Т.Н., Фомин А.В. Хориоидея при глаукоме: результаты исследования методом оптической когерентной томографии. Национальный журнал глаукома 2013; 4:73-83. [Kurisheva N.I., Ardjevnishvili T.D., Kiseleva T.N., Fomin A.V. Choroid in glaucoma: results of a study by optical coherence tomography. Natsionalniy jurnal glaukoma 2013; 4:73-83. (In Russ.)].
31. Anderson D.R. What happens to the optic disc and retina in glaucoma. Ophthalmology 1983; 90(7):766-70. doi: 10.1016/s0161- 6420(83)34490-0.
32. Flugel C., Tamm E., Mayer B. et al. Species differences in choroidal vasodilative innervation: Evidence for specific intrinsic nitregic and VIP-positive neurons in the human eye. Invest Ophthalmol Vis Sci 1994; 35(2):592-599.
33. Simon E. Skalicky Ocular and Visual Physiology: Clinical Application. Springer, 2015.
34. Schrodl F., Tines R., Brehmer A., Neuhuber W.L. Intrinsic choroidal neurons in the duck eye receive sympathetic input: anatomical evidence for adrenergic modulation of nitrergic functions in the choroid. Cell Tissue Res 2001; 304(2):175-84.2003. doi:10.1007/ s004410100362.
35. Kaur C., Sivakumar V., Yong Z., Lu J., Foulds W.S., Ling E.A. Blood-retinal barrier disruption and ultrastructural changes in the hypoxic retina in adult rats: the beneficial effect of melatonin administration. J Pathol 2007; 212(4):429-439. doi:10.1002/ path.2195.
36. Paurnaras C.J., Rungger-Brandle E., Riva C.E., Hardarson S.H., Stefansson E. Regulation of retinal blood in health and desease. Prog Retin Eye Res 2008; 27(3):284-330. doi:10.1016/j.preteyeres.2008.02.002.
37. Miller S., Steinberg R.H. Transport of taurine, L-methionine and 3-O-methyl-D-glucose across the frog retinal. Invest Ophthalmol Vis Sci 1982; 23:447-56. doi:10.1016/0014-4835(76)90201-3.
38. Tso M.O., Shih C.Y., McLean I.W. Is there a blood-brain barrier at the optic nerve head? Arch Ophthalmol 1975; 93(9):815-825. doi:10.1001/archopht.1975.01010020703008.
39. Morgan W., Lind C., Kain S., Fatehee N., Bala A., Yu D. Retinal vein pulsation is in phase with intracranial pressure and not intraocular pressure. Invest Ophthalmol Vis Sci 2012; 53:4676-4681. doi:10.1167/iovs.12-9837.
40. Краснов М.М. О внутриглазном кровообращении при глаукоме. Вестник офтальмологии 1998; 5:5-7. [Krasnov M.M. On intraocular circulation in glaucoma. Vestnik oftalmologii 1998; 5:5-7. (In Russ.)].
Review
For citations:
Kurysheva N.I. Vascular theory of the glaucomatous optic neuropathy pathogenesis: rationale in terms of ocular blood flow anatomy and physiology. Part 1. National Journal glaucoma. 2017;16(3):90-97. (In Russ.)