LYMPHATIC STRUCTURES OF THE EYE AND UVEOLYMPHATIC (METABOLIC) PATHWAY OF INTRAOCULAR FLUID OUTFLOW. Part 1
https://doi.org/10.25700/NJG.2018.01.01
Abstract
PURPOSE: To identify the lymphatic structures of the human eye, study their ultrastructural organization and morphological changes in the ciliary body and the choroid in patients with primary open-angle glaucoma.
METHODS: Fragments of eye tissues enucleated for medical indications (n=28) were studied. The main group included 17 eyes of patients diagnosed with terminal stage primary open-angle glaucoma. The tissues underwent an immunohistochemical study using monoclonal antibodies to markers of the following agents: blood vessel endotheliocytes CD31 and CD34 («Novocasra», Germany), lymphatic endotheliocytes LYVE-1 («Abcam», England), Podoplanin («Monosan», The Netherlands) and Prox-1 («Covance», Germany), fibroblast growth factor receptor marker FGFR («Abcam», England). Obtained eye tissues were studied by means of Leica DME light microscope. Electron microscopy of the eye tissues was carried out using JEM 1400 electron microscope (Japan).
RESULTS: The imunohistochemical and ultrastructural analysis of the ciliary body revealed the presence of lymphatic channels and structured interstitial spaces (tissue slits) formed by collagen fibers and fibroblasts. Lymphatic canals and lacunae were also found in the choroid. Lymphatic channels were located in the vascular capillary layer and were confined to cells similar to fibroblasts and pigment cells, while lymphatic lacunae were found in the suprachoroid layer and were lined with cells similar to fibroblasts. For the first time lymphatic structures were found on the border between the sclera and the lamina cribrosa and in the optic nerve sheath. The ciliary body in patients with terminal primary open-angle glaucoma shows the following structural signs of edema and stromal swelling: interstitial space widening, venous vessels lumen enlargement, reduction of the lymphatic endothelial cells marker expression. Similar processes were found in the choroid during the terminal stage of primary open-angle glaucoma: enlarged blood and lymphatic vessels lumens, pericapillary spaces swelling and enlargement, choriocapillary layer stroma swelling as well as the disruption of the anchoring collagen fibrils binding to myofibroblasts and pigment cells. The study revealed an associated with swelling significant increase in choroid thickness and volume density of the epithelium, interstitial spaces and vessels, which indicated inflammation.
CONCLUSION: The new fundamental data obtained during the study broadens the current understanding of lymphatic system elements presence in the human eye and their changes associated with primary open-angle glaucoma. This allows us to postulate the existence of a lymphatic (uveolymphatic) pathway of intraocular (tissue) fluid outflow, aimed at utilizing and excreting metabolic and cellular destruction products. Structural disturbances of the lymphatic outflow components play an important role in the mechanisms of primary open-angle glaucoma development.
About the Authors
V. V. ChernykhRussian Federation
Med.Sc.D., Professor, Director
10 Kolkhidskaya str., Novosibirsk, Russian Federation, 630071
N. P. Bgatova
Russian Federation
Doctor of Biological Sciences, Professor, Head of the Laboratory of Ultrastructural Research
2 Timakova str., Novosibirsk, Russian Federation, 630117
References
1. Egorov E.A., Kuroyedov A.V. Separate clinical and epidemiological characteristics of glaucoma in the CIS and Georgia. Results of a multicentre open retrospective study (Part 1). RMJ Clinical ophthalmology. 2011;3:97-100. (In Russ.).
2. Egorov E.A., Kuroyedov A.V. Separate clinical and epidemiological characteristics of glaucoma in the CIS and Georgia. Results of a multicentre open retrospective study (Part 2). RMJ Clinical ophthalmology. 2012;1:19-23. (In Russ.).
3. Stevens G.A., White R.A., Flaxman S.R., Price H., Jonas J.B., Keeffe J., Leasher J., Naidoo K., Pesudovs K., Resnikoff S., Taylor H., Bourne R.R. Vision Loss Expert Group. Global prevalence of visual impairment and blindness: magnitude and temporal trends, 1990-2010. Ophthalmology. 2013;120:2377-2384. doi: 10.1016/j.ophtha.2013.05.025.
4. Tham Y.C., Li X., Wong T.Y., Quigley H.A., Aung T., Cheng C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014; 121:2081-2090. doi: 10.1016/j.ophtha.2014.05.013.
5. Kymes S.M., Plotzke M.R., Li J.Z., Nichol M.B., Wu J., Fain J. The increased cost of medical services for people diagnosed with primary open-angle glaucoma: a decision analytic approach. Am J Ophthalmol. 2010; 150(1):74-81. doi: 10.1167/iovs.09-5147.
6. Muratov S., Podbielski D.W., Jack S.M. Preference-based disease-specific health-related quality of life instrument for glaucoma: a mixed methods study protocol. BMJ Open. 2016; 8(6): e012732. doi: 10.1136/bmjopen-2016-012732.
7. Nesterov A.P. Primary open-angle glaucoma: which concept is more legitimate? Ophthalmologic vedomosti. 2008;4:63-67. (In Russ.).
8. Erichev V.P., Egorov E.A. Pathogenesis of primary open-angle glaucoma. Vestn Oftalmol. 2014;6:98-105. (In Russ.).
9. Heijl A., Leske M., Bengtsson B., Hyman L., Bengtsson B., Hussein M. Reduction of intraocular pressure and glaucoma progression. Results from the early manifest glaucoma trial. Arch Ophthalmol. 2002; 120:1268-1279.
10. Martus P., Stroux A., Budde W.M., Mardin C.Y., Korth M., Jonas J.B. Predictive factors for pro-gressive optic nerve damage in various types of chronic open-angle glaucoma. Am J Ophthalmol. 2005;6:999-1009. doi: 10.1016/j.ajo.2004.12.056.
11. Andreeva L.D., Zhuravleva A.N. Distribution of the main types of collagen in the sclera of glaucoma eyes. Russian Ophthalmological J. 2009;1:4-9. (In Russ.).
12. Kuleshova O.N., Nepomnyashchikh G.I., Aidagulova S.V., Shvedova E.V. Ultrastructure of the endothelium of the drainage system of the eye. Bull Exper Biol Med. 2008;5:574-577. (In Russ.).
13. Trunov A.N., Bgatova N.P., Eremina A.V., Druzhinin I.B., Pozhidaeva A.A., Trunova L.A., Chernykh V.V. New approaches to assessing the severity of inflammatory disorders in the pathogenesis of primary open-angle glaucoma. Allergology and Immunology. 2016;17(2):107-111. (In Russ.).
14. Negrini D., Moriondo A. Lymphatic anatomy and biomechanics. J Physiol. 2011; 589:2927-2934. doi: 10.1113/jphysiol.2011.206672/
15. Konenkov V.I., Borodin Yu.I., Lyubarsky M.S. Limfologiya [Lymphology]. Novosibirsk: Manuscript Publ., 2012. 1104 p.
16. Petrov S.Yu. Lymphatic system of the eye. Natsional’nyi zhurnal glaucoma. 2014;3:58-62. (In Russ.).
17. Nikolenko V.N., Shugaeva K.Ya., Huseynov Т.S. Modern ideas about the structural and functional organization of the lymphatic system in physiological conditions and in pathology. Scientific review. Medical sciences. 2016;1:37-39. (In Russ.).
18. Bill A. Blood circulation and fluid dynamics in the eye. Physiolog Rev.1975; 55(3):383-417. doi: 10.1152/physrev.1975.55.3.383.
19. Kim M., Johnston M.G., Gupta N., Moore S., Y cel Y.H. A model to measure lymphatic drainage from the eye. Exp Eye Res. 2011; 93(5):586-591. doi: 10.1016/j.exer.2011.07.006.
20. Nakao S., Hafezi-Moghadam A., Ishibashi T. Lymphatics and Lymphangiogenesis in the Eye. J Ophthalmology. 2012; Article ID 783163, http://dx.doi.org/10.1155/2012/783163
21. Yücel Y.H., Johnston M.G., Ly T., Patel M., Drake B., G m E., Fraenkl S., Moore S., Tobbia D., Armstrong D., Horvath E., Gupta N. Identification of lymphatics in the ciliary body of the human eye: a novel "uveolymphatic" outflow pathway. Exp Eye Res. 2009;89(5):810-809. doi: 10.1016/j.exer.2009.08.010.
22. Birke K., L tjen-Drecoll E., Kerjaschki D., Birke M.T. Expression of Podoplanin and other lymphatic markers in the human anterior eye segment. Invest Ophthalmol Vis Sci. 2010;51(1):344-354. doi: 10.1167/iovs.08-3307.
23. Borodin Y.I., Bgatova N.P., Chernykh V.V., Trunov A.N., Pozhidaeva A.A., Konenkov V.I. Structure of lymphatic capillaries of the human ciliary body. Morphology. 2015;148(6):43-47. (In Russ.).
24. Chernykh V.V., Druzhinin I.B., Eremina A.V., Khodzhaev N.S., Konenkov V.I., Borodin Yu.I., Bgatova N.P., Pozhidaeva A.A., Trunov A.N. The role of the lymphatic system in the uveoscleral outflow of the intraocular fluid. Ophthalmosurgery. 2015;2:74-79. (In Russ.).
25. Schroedl F., Kaser-Eichberger A., Schlereth S.L., Bock F., Regenfuss B., Reitsamer H.A., Lutty G.A., Maruyama K., Chen L., L tjen-Drecoll E., Dana R., Kerjaschki D., Alitalo K., De Stefano M.E., Junghans B.M., Heindl L.M., Cursiefen C. Consensus statement on the immunohistochemical detection of ocular lymphatic vessels. Invest Opthalmol Vis Sci. 2014;55(10):6440-6442. doi:10.1167/iovs.14-15638.
26. Louveau A., Smirnov I., Keyes T.J., Eccles J.D., Rouhani S.J., Peske J.D., Derecki N.C., Castle D., Mandell J.W., Lee K.S., Harris T.H., Kipnis J. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337-341. doi: 10.1038/nature14432.
Review
For citations:
Chernykh V.V., Bgatova N.P. LYMPHATIC STRUCTURES OF THE EYE AND UVEOLYMPHATIC (METABOLIC) PATHWAY OF INTRAOCULAR FLUID OUTFLOW. Part 1. National Journal glaucoma. 2018;17(1):3-13. (In Russ.) https://doi.org/10.25700/NJG.2018.01.01