Preview

National Journal glaucoma

Advanced search

Bioretinometric criteria for the diagnostics of glaucoma associated with myopia

https://doi.org/10.25700/NJG.2019.01.01

Abstract

Purpose: To assess changes in the peripapillary retina and vessels of the arterial peripapillary circle of Zinn -Haller during the formation of glaucomatous optic neuropathy in patients with glaucoma associated with myopia.

Methods: We examined 26 patients (26 eyes) with a moderate stage of primary open-angle glaucoma on eyes with high myopia and 30 people (30 eyes) with uncomplicated myopia. Optical coherence tomography in angiography mode was included in the standard ophthalmologic examination.

Results: A rim area reduction (1.03±0.36 and 1.6±0.42; р=0.05) in patients with glaucoma develops against the background of choroid thinning, mainly in the lower (131.36±41.98 and 226.5±98.13; р=0.01) and nasal (57.63±9.81 and 216±122.4; р=0.0006) segments and is accompanied by an increase of the peripapillary atrophy area (1.94±0.5 and 1.05±0.15; р=0.005), which indicates the inconsistency

of trophic and metabolic processes. Changes in the vascular topography of the Zinn - Haller arterial circle (reduction of the density of small branches, exposure of large vessels with the formation of non-perfusion zones) in the area of peripapillary atrophy due to oscillations of the ophthalmic nerve should be considered as ischemia of the optic nerve head resulting from a disruption of the peripapillary blood flow with a choroidal blood supply.

Conclusion: Visualization and evaluation of dystrophic changes in the peripapillary retina and vascular topography of the Zinn - Haller arterial peripapillary circle can serve as the differential diagnostic criteria for glaucoma associated with myopia and be used to monitor the course of the glaucoma process.

About the Authors

S. I. Zhukova
Irkutsk Branch of S. Fyodorov Eye Microsurgery Federal State Institution
Russian Federation

Ph.D., head of Diagnostic Department.

337 Lermontova Str., Irkutsk, 664033



Yu. N. Yureva
Irkutsk Branch of S. Fyodorov Eye Microsurgery Federal State Institution; Irkutsk State Medical Academy of Postgraduate Education; Irkutsk State Medical University
Russian Federation

Med.Sc.D., Professor, Vice Director of Scientific Work, Professor of Ophthalmology Department.

337 Lermontova Str., Irkutsk, 664033; 100 Yubileiny, Irkutsk, 664049; 1 Krasnogo Vosstania Str., Irkutsk, 664003



I. V. Pomkina
Irkutsk Branch of S. Fyodorov Eye Microsurgery Federal State Institution
Russian Federation

M.D.

337 Lermontova Str., Irkutsk, 664033



A. S. Grishchuk
Irkutsk Branch of S. Fyodorov Eye Microsurgery Federal State Institution
Russian Federation

M.D.

337 Lermontova Str., Irkutsk, 664033



References

1. Chen S.J. High myopia as a risk factor in primary open angle glaucoma. Int J Ophthalmol. 2012; 5(6):750-753. http://doi.org/10.3980/j.issn.2222-3959.2012.06.18

2. Jonas J.B., Gusek G.C., Naumann G.O.H. Optic disk morphometry in high myopia. Graefes Arch Clin Exp Ophthalmol. 1988; 226:587-590. http://doi.org/10.1111/j.1755-3768.2009.01660.x

3. Dichtl A., Jonas J.B., Naumann G.O. Histomorphometry of the optic disc in highly myopic eyes with absolute secondary angle closure glaucoma. Br J Ophthalmol. 1998; 82:286-289. http://dx.doi.org/10.1136/bjo.82.3.286

4. Corallo G., Capris P., Zingirian M. Perimetric findings in subjects with elevated myopia and glaucoma. Acta Ophthalmol Scand Suppl. 1997; 224:30-31.

5. Doughty M.J., Zaman M.L. Human corneal thickness and its impact on intraocular pressure measures: a review: a meta-analysis approach. Surv Ophthalmol. 2000; 44:367-408. https://doi.org/10.1016/ S0039-6257(00)00110-7

6. Medeiros F.A., Weinreb R.N. Evaluation of the influence of corneal biomechanical properties on intraocular pressure measurements using the ocular response analyzer. Glaucoma. 2006; 15:364-370. http://doi.org/10.1097/01.ijg.0000212268.42606.97

7. Avetisov S.E., Bubnova I.A., Antonov A.A. Clinical and experimental aspects of studying the biomechanical properties of the fibrous membrane of the eye. Vestnik oftal’mologii. 2013; 5:82-90. (In Russ.).

8. Volkov V.V. Glaukoma pri psevdonormal’nom davlenii [Normal-tension glaucoma]. Moscow: Meditsina Publ.; 2001: 350. (In Russ.).

9. Gazarek J., Jan J., Kolar R., Odstrcilik J. Bimodal comparison of retinal nerve fibre layer atrophy evaluation. Proc. Biosignal: Analysis of Biomedical Signals and Images. 2010; 20:409-413.

10. Dichtl A., Jonas J.B., Naumann G.O.H.. Glaucoma in high myopia and parapapillary delta zone. PLOS ONE. 2017; 5. https://doi.org/10.1371/journal.pone.0175120

11. Lee J.E., Sung K.R., Park J.M. et al. Optic disc and peripapillary retinal nerve fiber layer characteristics associated with glaucomatous optic disc in young myopia. Graefe’s Arch Clin Exper Ophthalmol 2017; 255(3):591-598. https://doi.org/10.1007/s00417-016-3542-4

12. Schuko A.G., Malyshev V.V. Optical coherent tomography in the diagnosis of eye diseases. Moscow: GEOTAR-Media Publ; 2010; 128. (In Russ.).

13. Zhukova S.I., Iureva T.N., Mikova O.I., Samsonov D.Yu., Grigorieva A.V., Pyatova Yu.S. OCT-angiography in the assessment of chorioretinal blood flow in patients with primary open-angle glaucoma with intraocular pressure fluctuations. Klinicheskaya Oftal’mologiya 2016; 2:98-103. (In Russ.)]. https://doi.org/10.21689/2311-7729-2016-16-2-98-103

14. Mansouri K., Rao H.L., Hoskens K. et al. Diurnal variations of peripapillary and Macular vessel density in glaucomatous eyes using optical coherence tomography angiography. J Glaucoma. 2018; 27(4):336-341. https://doi.org/10.1097/IJG.0000000000000914

15. Lumbroso B., Huang D., Jia Y. et al. Clinical guide to angio-OCT: non invasive, dyeless OCT angiography. New Delhi: Jaypee Brothers Medical Publ.; 2015: 86.

16. Ishida Tomoka, Jonas Jost B. Ishii, Minami et al. Peripapillary arterial ring of Zinn-Haller in highly myopic eyes as detected by optical coherence tomography angiography. Retina. 2017; 37(2):299-304. https://doi.org/10.1097/IAE.0000000000001165

17. Shchuko A.G., Iureva T.N. Algoritmy diagnostiki i lecheniya bol’nykh pervichnoy glaukomoy. [Algorithms for the diagnosis and treatment of patients with primary glaucoma]. Irkutsk: Institute of doctors’ improvement; 2010: 45. (In Russ.).

18. Kim T.-W. et al. Optic disc change with incipient myopia of childhood. Ophthalmology. 2012; 119(1):21-26. https://doi.org/10.1016/j.oph-tha.2011.07.051

19. Grigorieva A.V., Shchuko A.G., Zhukova S.I., Samsonov D.Yu., Iureva T.N., Zaytseva N.V. Differential diagnostic criteria for choroidal neovascularization in complicated myopia and exudative age-related macular degeneration. Sovremennyye tekhnologii v oftal’mologii 2016; 4:69-72. (In Russ.).

20. Mozaffari M., Flammer I. Krovoobrashcheniye glaza i glaukomnaya opticheskaya neyropatiya. [Ocular blood circulation and glaucomatous optic neuropathy]. Saint Petersburg: Eco-Vector Publ.; 2013: 141. (In Russ.).


Review

For citations:


Zhukova S.I., Yureva Yu.N., Pomkina I.V., Grishchuk A.S. Bioretinometric criteria for the diagnostics of glaucoma associated with myopia. National Journal glaucoma. 2019;18(1):3-9. (In Russ.) https://doi.org/10.25700/NJG.2019.01.01

Views: 1052


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)