Preview

National Journal glaucoma

Advanced search

Rationale for neuroprotection in glaucoma

https://doi.org/10.25700/NJG.2019.01.10

Abstract

Glaucoma is a chronic progressive optic neuropathy, characterized by changes in the optic nerve head (cup) and ganglion cell complex (GCC) loss that lead to field of vision defects. In some patients GCC loss progresses despite intraocular pressure (IOP) level normalization. Today neuroprotection is one of the most promising trends in glaucoma treatment. It is directed at GCC loss prevention in patients with normal-tension glaucoma. Neuroprotection can be direct or indirect, depending on the nature of damaging factors and counteraction mechanisms. Indirect neuroprotection includes IOP level decrease and hemodynamics improvement. Direct neuroprotection can be primary and secondary. Such pharmaceutical groups as NMDA-receptor antagonists and calcium-channel blockers have a direct neuroprotective action. They protect retinal neurons and optic nerve head fibers by blocking the main ischemic cell damage factors and moderate ischemia-associated increase of lipid peroxidation products, free radicals and calcium ions concentration. Secondary neuroprotection drugs influence the delayed neuronal death mechanisms. They include Ginkgo biloba, antioxidants, neurotrophic drugs (Brimonodone, Betaxolol, carbonic anhydrase inhibitors, prostaglandin analogues) and peptide bioregulators. IOP level decrease still remains the main means of glaucoma treatment. One of the questions of considerable substance in IOP lowering achievement is the elaboration of alternative methods aimed at further progression prevention. Based on the latest research, neuroprotective medicine shows promise in GCC loss prevention despite the actual IOP level. This article presents information on a wide range of neuroprotective drugs used in complex glaucoma treatment.

About the Authors

S. E. Avetisov
Scientific Research Institute of Eye Diseases
Russian Federation

Academician of RAN, Scientific Director.

11A Rossolimo st., Moscow, 119021



V. P. Erichev
Scientific Research Institute of Eye Diseases
Russian Federation

Med.Sc.D., Professor, Head of Glaucoma Department.

11A Rossolimo st., Moscow, 119021



T. V. Yaremenko
I.M. Sechenov First Moscow State Medical University
Russian Federation

Postgraduate student.

8 Trubetskaya st., Moscow, 119991



References

1. Quigley H.A., Broman A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006; 90(3): 262-267.

2. Kingman S. Glaucoma is second leading cause of blindness globally. Bull World Health Organ. 2004; 82(11): 887-888.

3. Resnikoff S. et al. Global data on visual impairment in the year 2002. Bull World Health Organ. 2004; 82(11): 844-851.

4. European Glaucoma Society Terminology and Guidelines for Glaucoma, 4th Edition - Part 1Supported by the EGS Foundation. Br J Ophthalmol. 2017; 101(4): 1-72.

5. Kaushik S., Pandav S.S., Ram J. Neuroprotection in glaucoma. J Postgrad Med. 2003; 49(1): 90-95.

6. Egorov E.A., Egorova T.E., Shramko Y.G. Effect of Retinalamin usage in patients with compensated primary open-angle glaucoma. RMJ. Journal of Clinical Ophthalmology. 2014; 15(4): 188-193. (In Russ.).

7. The Glaucoma Book: A Practical, Evidence-Based Approach to Patient Care. Ed. Schacknow P.N., Samples J.R. New York: Springer-Verlag; 2010.

8. Dielemans I. et al. The prevalence of primary open-angle glaucoma in a population-based study in The Netherlands. The Rotterdam Study. Ophthalmology. 1994; 101(11):1851-1855.

9. Haefliger I.O., Fleischhauer J.C., Flammer J. In glaucoma, should enthusiasm about neuroprotection be tempered by the experience obtained in other neurodegenerative disorders? Eye Lond Engl. 2000; 14(Pt 3B): 464-472.

10. Levin L.A. Direct and indirect approaches to neuroprotective therapy of glaucomatous optic neuropathy. Surv Ophthalmol. 1999; 43 (Suppl 1):98-101.

11. Osborne N.N. et al. Neuroprotection in relation to retinal ischemia and relevance to glaucoma. Surv Ophthalmol. 1999; 43 (Suppl 1): 102-128.

12. Salt T., Cordeiro M. Glutamate excitotoxicity in glaucoma. Eye Lond Engl. 2006; 20(6):730-732.

13. Miguel-Hidalgo J.J. et al. Neuroprotection by memantine against neurodegeneration induced by beta-amyloid (1-40). Brain Res. 2002; 958(1): 210-221.

14. Levy D.I., Lipton S.A. Comparison of delayed administration of competitive and uncompetitive antagonists in preventing NMDA receptor-mediated neuronal death. Neurology. 1990; 40(5): 852-852.

15. Sisk D.R., Kuwabara T. Histologic changes in the inner retina of albino rats following intravitreal injection of monosodium L-glutamate. Graefes Arch Clin Exp Ophthalmol. 1985; 223(5):250-258.

16. Osborne N.N. et al. Ganglion cell death in glaucoma: what do we really know? Br J Ophthalmol. 1999; 83(8):980-986.

17. Garcia-Campos J. et al. Morphological and functional changes in experimental ocular hypertension and role of neuroprotective drugs. Histol Histopathol. 2007; 22(12): 1399-1411.

18. Naskar R., Dreyer E.B. New horizons in neuroprotection. Surv Ophthalmol. 2001; 45(Suppl 3):250-255; discussion S273-276.

19. Sucher N.J., Lipton S.A., Dreyer E.B. Molecular basis of glutamate toxicity in retinal ganglion cells. Vision Res. 1997; 37(24):3483-3493.

20. Fang J.H. et al. Neuroprotective effects of bis(7)-tacrine against glutamate-induced retinal ganglion cells damage. BMC Neurosci. 2010; 11:31.

21. Kapin M.A. et al. Neuroprotective effects of eliprodil in retinal exci-totoxicity and ischemia. Invest Ophthalmol Vis Sci. 1999; 40(6): 1177-1182.

22. Brooks D.E. et al. Vitreous body glutamate concentration in dogs with glaucoma. Am J Vet Res. 1997; 58(8):864-867.

23. Dreyer E.B. et al. Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch. Ophthalmol Chic. 1960. 1996; 114(3):299-305.

24. Carter-Dawson L. et al. Vitreal glutamate concentration in monkeys with experimental glaucoma. Invest Ophthalmol Vis Sci. 2002; 43(8):2633-2637.

25. Lipton S.A. Possible role for memantine in protecting retinal ganglion cells from glaucomatous damage. Surv Ophthalmol. 2003; 48 (Suppl 1):38-46.

26. Guo L. et al. Assessment of neuroprotective effects of glutamate modulation on glaucoma-related retinal ganglion cell apoptosis in vivo. Invest Ophthalmol Vis Sci. 2006; 47(2):626-633.

27. Lipton S.A. Prospects for clinically tolerated NMDA antagonists: open-channel blockers and alternative redox states of nitric oxide. Trends Neurosci. 1993; 16(12):527-532.

28. Vorwerk C.K. et al. Chronic low-dose glutamate is toxic to retinal ganglion cells. Toxicity blocked by memantine. Invest Ophthalmol Vis Sci. 1996; 37(8):1618-1624.

29. Lagreze W.A. et al. Memantine is neuroprotective in a rat model of pressure-induced retinal ischemia. Invest Ophthalmol Vis Sci. 1998; 39(6):1063-1066.

30. Hare W.A. et al. Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey, I: Functional measures. Invest Ophthalmol Vis Sci. 2004; 45(8): 2625-2639.

31. Stout A.K. et al. Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat Neurosci. 1998; 1(5):366-373.

32. Crish S.D., Calkins D.J. Neurodegeneration in glaucoma: progression and calcium-dependent intracellular mechanisms. Neuroscience. 2011; 176:1-11.

33. Yamada H. et al. Neuroprotective effect of calcium channel blocker against retinal ganglion cell damage under hypoxia. Brain Res. 2006; 1071(1):75-80.

34. Yamada H. et al. Neuroprotective effect of calcium channel blocker against retinal ganglion cell damage under hypoxia. Brain Res. 2006; 1071(1):75-80.

35. Koseki N. et al. Effects of oral brovincamine on visual field damage in patients with normal-tension glaucoma with low-normal intraocular pressure. J Glaucoma. 1999; 8(2):117-123.

36. Koseki N. et al. A placebo-controlled 3-year study of a calcium blocker on visual field and ocular circulation in glaucoma with low-normal pressure. Ophthalmology. 2008; 115(11):2049-2057.

37. Langham M.E. Ocular blood flow and vision in healthy and glaucomatous eyes. Surv Ophthalmol. 1994; 38:161-S168.

38. Prunte C., Orgul S., Flammer J. Abnormalities of microcirculation in glaucoma: facts and hints. Curr Opin Ophthalmol. 1998; 9(2):50-55.

39. Tielsch J.M. et al. Hypertension, perfusion pressure, and primary open-angle glaucoma. A population-based assessment. Arch Ophthalmol. 1995; 113(2):216-221.

40. Takayama J. et al. Time course of the change in optic nerve head circulation after an acute increase in intraocular pressure. Invest Ophthalmol Vis Sci. 2003; 44(9):3977-3985.

41. Izzotti A., Bagnis A., Sacca S.C. The role of oxidative stress in glaucoma. Mutat Res. 2006; 612(2):105-114.

42. Ferreira S.M. et al. Oxidative stress markers in aqueous humor of glaucoma patients. Am J Ophthalmol. 2004; 137(1):62-69.

43. Mischenko N.P., Fedoreyev S.A., Dogadova L.P. The drug histochrome for ophthalmology. Vestnik of the Far East Brach of the Russian Academy of Sciences. 2004; 3. (In Russ.).

44. Azzi A., Stocker A. Vitamin E: non-antioxidant roles. Prog Lipid Res. 2000; 39(3):231-255.

45. Tran K., Chan A.C. R-alpha-tocopherol potentiates prostacyclin release in human endothelial cells. Evidence for structural specificity of the tocopherol molecule. Biochim Biophys Acta. 1990; 1043(2):189-197.

46. Chatelain E. et al. Inhibition of smooth muscle cell proliferation and protein kinase C activity by tocopherols and tocotrienols. Biochim Biophys Acta. 1993; 1176(1-2):83-89.

47. Antonenko Y.N. et al. Mitochondriajtargeted plastoquinone derivatives as tools to interrupt execution of the aging program 1. Cationic plastoquinone derivatives: synthesis and in vitro studies. Biochemistry. 2008; 73(12):1589-1606. (In Russ.).

48. Birks J., Grimley Evans J. Ginkgo biloba for cognitive impairment and dementia. Cochrane Database Syst. Rev. 2007(2):. CD003120.

49. Ghiso J.A. et al. Alzheimer’s disease and glaucoma: mechanistic similarities and differences. J Glaucoma. 2013; 22(5):36-38.

50. Ritch R. Potential role for Ginkgo biloba extract in the treatment of glaucoma. Med Hypotheses. 2000; 54(2):221-235.

51. Sacca S.C. et al. Oxidative DNA damage in the human trabecular meshwork: clinical correlation in patients with primary open-angle glaucoma. Arch Ophthalmol. Chic. Ill 1960. 2005; 123(4):458-463.

52. Eckert A. et al. Stabilization of mitochondrial membrane potential and improvement of neuronal energy metabolism by Ginkgo biloba extract EGb 761. Ann N YAcad. Sci. 2005; 1056:474-485.

53. Quaranta L. et al. Effect of Ginkgo biloba extract on preexisting visual field damage in normal tension glaucoma. Ophthalmology. 2003; 110(2):359-362; discussion 362-364.

54. Guo X. et al. Effect of Ginkgo biloba on visual field and contrast sensitivity in Chinese patients with normal tension glaucoma: a randomized, crossover clinical trial. Invest Ophthalmol Vis Sci. 2014; 55(1):110-116.

55. Le Bars P.L., Kastelan J. Efficacy and safety of a Ginkgo biloba extract. Public Health Nutr. 2000; 3(4):495-499.

56. Johnson J.E. et al. Brain-derived neurotrophic factor supports the survival of cultured rat retinal ganglion cells. J Neurosci Off J Soc Neurosci. 1986; 6(10):3031-3038.

57. Sawai H. et al. Brain-derived neurotrophic factor and neurotro-phin-4/5 stimulate growth of axonal branches from regenerating retinal ganglion cells. J Neurosci Off J Soc Neurosci. 1996; 16(12): 3887-3894.

58. Mey J., Thanos S. Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo. Brain Res. 1993; 602(2):304-317.

59. Donello J.E. et al. Alpha2-adrenoreceptor agonists inhibit vitreal glutamate and aspartate accumulation and preserve retinal function after transient ischemia. J Pharmacol Exp Ther. 2001; 296(1):216-223.

60. Kalapesi F.B., Coroneo M.T., Hill M.A. Human ganglion cells express the alpha-2 adrenergic receptor: relevance to neuroprotection. Br J Ophthalmol. 2005; 89(6):758-763.

61. Yoles E., Wheeler L.A., Schwartz M. Alpha2-adrenoreceptor agonists are neuroprotective in a rat model of optic nerve degeneration. Invest Ophthalmol Vis Sci. 1999; 40(1):65-73.

62. Lambert W.S. et al. Brimonidine prevents axonal and somatic degeneration of retinal ganglion cell neurons. Mol Neurodegener. 2011; 6(1):4.

63. Krupin T. et al. A randomized trial of brimonidine versus timolol in preserving visual function: results from the Low-Pressure Glaucoma Treatment Study. Am J Ophthalmol. 2011; 151(4):671-681.

64. Sena D.F., Lindsley K. Neuroprotection for treatment of glaucoma in adults. Cochrane Database Syst Rev. 2013; 2: CD006539.

65. Abizgildina G. Sh.. Combined treatment of glaucomatous opnic neuropathy. Medical Bulletin Bashkortostan. 2014; 9 (2). (In Russ.).

66. Pease M.E. et al. Effect of CNTF on retinal ganglion cell survival in experimental glaucoma. Invest Ophthalmol Vis Sci. 2009; 50(5): 2194-2200.

67. Liu B., Neufeld A.H. Nitric oxide synthase-2 in human optic nerve head astrocytes induced by elevated pressure in vitro. Arch Ophthalmol. 2001; 119(2):240-245.

68. Neufeld A.H., Sawada A., Becker B. Inhibition of nitric-oxide synthase 2 by aminoguanidine provides neuroprotection of retinal ganglion cells in a rat model of chronic glaucoma. Proc Natl Acad. Sci. U. S. A. 1999; 96(17):9944-9948.

69. Geyer O. et al. Nitric oxide synthase inhibitors protect rat retina against ischemic injury. FEBS Lett. 1995; 374(3):399-402.

70. Egorov E.A., Brezhnev A.Yu., Egorov A.E. Neuroprotection in glaucoma: current opportunities and future prospects. RMJ. Clinical Ophthalmjlogy. 2014; 2:108-112. (In Russ.).

71. Egorov E.A. Neuroprotection with POUG. RMJ. Clinical Ophthalmjlogy. 2015; 3:154-159. (In Russ.).

72. Astakhov Yu.S., Butin E.V., Morozova N.V., Sokolov V.O. The results of retinalamin in patients with open-angle prime glaucoma. Glaucoma. 2006; 2:43-47. (In Russ.).

73. Egorov E.A., Egorova T.E., Shramko Yu.G. Effect of Retinalamin usage in patients with compensated primary open-angl glaucoma. RMJ. Clinical Ophthalmjlogy. 2014; 14(4):188-193. (In Russ.).

74. Ilyina S.N., Lomanik I.F., Logosh S.M., Shavlovskaya T.V. Retinalamine of neuroprotection primary therapy patients open-angle glaucoma. Ophthalmology Eastern Europe. 2012; 4:96-101. (In Russ.).

75. Mazunin I.Yu. The results of the use of the retinalamin neuro-retinaprotector after laser trabeculoplasty in case of formal primary open-angle glaucoma. J. Medical Almanac. 2014; 1(31):69-73. (In Russ.).

76. Malishevskaya T.N., Dolgova I.G. Comparative analysis of the effectiveness of various methods of neuroprotective therapy in patients with primary stabilized glaucoma in the advanced stage. Natsional’nyi zhurnalglaucoma. 2016; 15(2):84-92. (In Russ.).

77. Rozhko Yu.I. Marchenko L.N., Child N.A. et al. Neuroretin-protective effect of cortexin and retinalamin in the treatment of open-angle glaucoma. Problems of Health and Ecology. 2010; 3(25). (In Russ.).


Review

For citations:


Avetisov S.E., Erichev V.P., Yaremenko T.V. Rationale for neuroprotection in glaucoma. National Journal glaucoma. 2019;18(1):85-94. (In Russ.) https://doi.org/10.25700/NJG.2019.01.10

Views: 2215


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)