The interpretation of the clinical results of fovea localization in glaucoma diagnostics. Part 1. Population variability of the macula positioning in relation to the optic disc
https://doi.org/10.25700/NJG.2019.02.01
Abstract
Purpose: To determine the nature of the relationship between the localization of the fovea, the position of the papillary-macular bundle and individual morphofunctional characteristics of the eye in patients with different eye diseases.
Methods: The final protocol of work included the data of 33 people (17 women, 16 men, 46 eyes). The average age of patients was 78 (71; 81) years. All patients were divided into 3 groups: the first group consisted of 11 patients (16 eyes) with mild, moderate and advanced primary openangle glaucoma (POAG), the second — 13 patients (15 eyes) with early cataract, the third — 9 people (15 eyes) with the dry form of age-related macular degeneration (AMD). Morphometric characteristics of optic nerve head (ONH) and the retinal nerve fiber layer (RNFL), including the disk circumference measurement on the Elschnig’s ring and the papillomacular bundle (PMB) angle in relation to ONH was studied by optical coherence tomography using the Spectralis OCT device (“Heidelberg Engineering”, Germany). The data was statistically analyzed.
Results: The PMB angle relative to the location of the ONH in patients with glaucoma equaled -7.9 (-8.2; -6.8)°, in patients with cataract — -7.9 (-9.7; -6.3)° and patients with AMD — -7.9 (-8.0; -5.4)°. There was no statistically significant difference in the analysis of this parameter.
Conclusion: The position of fovea and the direction of PMB is a constant population value in patients with glaucoma, cataract or AMD. Foveal location is shifted, on average, 7.9° lower in relation to the conditional center of the ONH, which should be taken into account when analyzing the results of the RNFL study.
About the Authors
A. V. KuroyedovRussian Federation
Med.Sc.D., M.D., Professor, Head of Ophthalmology Department.
8A Bolshaya Olenya st., Moscow, Russian Federation, 107014
1 Ostrovityanova st., Moscow, Russian Federation, 117997
V. V. Gorodnichy
Russian Federation
M.D.
8A Bolshaya Olenya st., Moscow, Russian Federation, 107014
E. A. Krinitsina
Russian Federation
Postgraduate, M.D.
8/2 Trubetskaya st., Moscow, Russian Federation, 119991
V. M. Sergeeva
Russian Federation
Student.
8/2 Trubetskaya st., Moscow, Russian Federation, 119991
I. V. Kondrakova
Russian Federation
M.D.
8A Bolshaya Olenya st., Moscow, Russian Federation, 107014
O. V. Gaponko
Russian Federation
Ph.D., M.D., Assistant professor.
8A Bolshaya Olenya st., Moscow, Russian Federation, 107014
1 Ostrovityanova st., Moscow, Russian Federation, 117997
S. V. Diordyichuk
Russian Federation
M.D.
8A Bolshaya Olenya st., Moscow, Russian Federation, 107014
References
1. Hulke J.W. On the anatomy of the fovea centralis of the human retina. Philosophical Transactions of the Royal Society of London. 1867; 157:109-115.
2. Williams T.D., Wilkinson J.M. Position of the fovea centralis with respect to the optic nerve head. Opthometry Vis Sci. 1992; 69(5):369-377.
3. Rohrschneider K. Determination of the location of the fovea on the fundus. Invest Ophthalmol Vis Sci. 2004; 45(9):3257-3258. doi: 10.1167/iovs.03-1157.
4. Choi J.A., Kim J.S., Lopilly Park H.Y. et al. The foveal position relative to the optic disc and the retinal nerve fiber layer thickness profile in myopia. Invest Ophthalmol Vis Sci. 2014; 55(3):1419-1426.
5. Zhang Q., Chen K.K., Liu W.-F., Huang G.-F. Change in foveal position based on age and axial length in high myopic eyes. Int J Ophthalmol. 2018; 11(5):844-847.
6. Jonas R.A., Wang Y.X., Yang H. et al. Optic Disc - Fovea Angle: The Beijing Eye Study 2011. PLOS ONE. 2015; 10(11):e0141771. doi: 10.1371/journal.pone.0141771
7. Kurysheva N.I. Optical coherence tomography in glaucoma diagnostics. Мoscow; 2015: 148 p.
8. Huang J.Y., Pekmezci M., Mesiwala N. et al. Diagnostic power of optic disc morphology, peripapillary retinal nerve fiber layer thickness,
9. and macular inner retinal layer thickness in glaucoma diagnosis with fourier-domain optical coherence tomography. J Glaucoma. 2011; 20(2):87-95.
10. Gupta D., Asrani S. Macular thickness analysis for glaucoma diagnosis and management. Taiwan J Ophthalmol. 2016; 6(1):3-7. doi: 10.1016/j.tjo.2016.01.003.
11. Mota M., Vaz F.T., Ramalho M. et al. Macular thickness assessment in patients with glaucoma and its correlation with visual fields. J Curr Glaucoma Pract. 2016; 10(3):85-90. doi: 10.5005/jp-journals-10008-1207.
12. Rao H.L., Riyazuddin M., Dasari S. et al. Relationship of macular thickness and function to optical microangiography measurements in glaucoma. J Glaucoma. 2018; 27(3):210-218. doi: 10.1097/IJG.0000000000000874.
13. Kansal V., Armstrong J.J., Pintwala R., Hutnik S. Optical coherence tomography for glaucoma diagnosis: an evidence based meta-analysis. PLoS ONE. 2018; 13(1):e0190621. https://doi. org/10.1371/journal.pone.0190621.
Review
For citations:
Kuroyedov A.V., Gorodnichy V.V., Krinitsina E.A., Sergeeva V.M., Kondrakova I.V., Gaponko O.V., Diordyichuk S.V. The interpretation of the clinical results of fovea localization in glaucoma diagnostics. Part 1. Population variability of the macula positioning in relation to the optic disc. National Journal glaucoma. 2019;18(2):3-9. (In Russ.) https://doi.org/10.25700/NJG.2019.02.01