Research of Langerhans cells in the subepithelial corneal nerve fiber layer in primary open-angle glaucoma
https://doi.org/10.25700/NJG.2019.02.06
Abstract
Purpose: To estimate the number of Langerhans cells (LC) in the cornea in primary open-angle glaucoma (POAG) at various stages of the disease.
Methods: The study included 129 patients. The main group — 102 patients (204 eyes) aged from 42 to 83 years (62.5±2.4 years) — diagnosed with POAG stage I-IV. The control group consisted of 27 ophthalmologically healthy volunteers (54 eyes) with a normal level of IOP and no signs of POAG aged 54 to 76 years (65.9±1.4 years). The patients underwent visometry, biomicroscopy of the anterior segment of the eye, ophthalmoscopy, gonioscopy, Pascal contour tonometry, optical coherence tomography (OCT) (Zeiss Stratus 3000) and corneal confocal microscopy (CMR) (HRT III, with Rostock Cornea Modul).
Results: The average number of LC in patients with glaucoma amounted to 144±21 cells/mm2. It was higher than in the norm group, the difference was statistically significant (p=0.0002). The study revealed an increase in the number of LC associated with the development of glaucoma. A significant positive correlation of the amount of LC in the nerve fiber layer with the stage of the disease (R=0.23, p<0.05) was also found, as well as a negative correlation with the anisotropy coefficient of the directivity of the corneal nerve fibers in the POAG group (R= -0.29, p<0.001). Intereye asymmetry was investigated, which was found to be the higher, the greater the difference in the stages of POAG between paired eyes. With the value of the indicator of interocular asymmetry LC, equal to 19.68%, the sensitivity and specificity of the proposed indicator for the diagnosis of POAG were 94.1 and 66.6%, respectively. Thus, the values of the interocular asymmetry LC indicator above 19.68% are considered pathological.
Conclusion: The detected increase in the number of LC in the nerve fiber layer indicates the presence of an inflammatory process in the eye, which may well be autoimmune. And it may be the root cause of open-angle glaucoma, lead to pathological glaucomatous scleropathy with damage to the drainage apparatus of the eye and a corresponding increase in IOP level. It also causes a characteristic clinical course in the form of a chronic, bilateral, low-intensity process. In this sense, the neurodegenerative processes in the anterior and posterior segments of the eye are pathogenetically uniform.
About the Authors
A. A. PopovaRussian Federation
M.D.
91 Svobody str., Yaroslavl, Russian Federation, 150040
V. V. Strakhov
Russian Federation
Med.Sc.D, Professor, Head of the Ophthalmology Department.
5 Revolucionnaya str., Yaroslavl, Russian Federation, 150000
A. A. Murashov
Russian Federation
Doctor of Engineering Sciences.
28 Moskovsky Prospect, Yaroslavl, Russian Federation, 150001
N. Yu. Shirina
Russian Federation
Candidate of Engineering Sciences.
5 Revolucionnaya str., Yaroslavl, Russian Federation, 150000
Z. V. Surnina
Russian Federation
Ph.D., M.D.
11A, B Rossolimo st., Moscow, Russian Federation, 119021
A. I. Malakhova
Russian Federation
Ph.D., M.D.
27 Gagarina ave., Smolensk, Russian Federation, 2140005
O. N. Klimova
Russian Federation
Ph.D., Assistant professor of the Ophthalmology Department.
5 Revolucionnaya str., Yaroslavl, Russian Federation, 150000
References
1. Volkov V.V. Glaukoma otkrytougol’naja. [Open-angle glaucoma]. Moscow: MIA, 2008; 348 p. (In Russ.).
2. Quigley H.A., Broman A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006; 90(3):262-267.
3. Neroyev V.V. The work of the Russian National Committee on the Elimination of Dispensable Blind in the framework of the WHO program “Vision 2020”. Report at the Russian National Ophthalmological Forum. Moscow, 2014. [Electronic resource] URL: http://www.helmholtzeyeinstitute.ru/ (appeal date 07/27/2017)
4. Neroyev V.V., Kiseleva O.A., Bessmertny A.M. The results of multicenter studies of epidemiological characteristics of primary open angle glaucoma in the Russian Federation. Russian Ophthalmological J. 2013; 3:4-7. (In Russ.).
5. Leske M.C., Wu S.Y., Hennis A. et al. Risk factors for incident openangle glaucoma: the Barbados Eye Studies. Ophthalmology. 2008; 115:85-93.
6. Erichev V.P., Petrov S.Y., Kozlova I.V., Makarova A.S., Reshchikova V.S. Modern methods of functional diagnostics and monitoring of glaucoma. Part 1. Perimetry as a functional diagnostics method. National Journal glaucoma. 2015;14(2):75-81. (In Russ.).
7. Erichev V.P., Petrov S.Y., Kozlova I.V., Makarova A.S., Reshchikova V.S. Modern methods of functional diagnostics and monitoring of glaucoma. Part 2. Diagnosis of structural damage of the retina and optic nerve. National Journal glaucoma. 2015; 14(3):72-79. (In Russ.).
8. Erichev V.P., Petrov S.Y., Kozlova I.V., Makarova A.S., Reshchikova V.S. Modern methods of functional diagnostics and monitoring of glaucoma. Part 3. The role of the morphological and functional relationships in the early detection and monitoring of glaucoma. National Journal glaucoma. 2016; 15(2):96-101. (In Russ.).
9. Strakhov V.V., Alekseev V.V. The pathogenesis of primary glaucoma — «all or nothing». Glaucoma. 2009; 2:40-52. (In Russ.).
10. Strakhov V.V., Surnina Z.V., Malakhova A.I., Klimova O.N., Popova A.A. Degenerative changes of the corneal nerves in patients with primary open-angle glaucoma. National Journal glaucoma. 2017; 16(4):52-68. (In Russ.).
11. Alekseev I.B., Strakhov V.V., Melnikova N.V., Popova A.A. Changes in the fibrous tunic of the eye in patients with newly diagnosed primary open-angle glaucoma. National Journal glaucoma. 2016; 15(1): 13-24. (In Russ.).
12. Zhivov A., Stave J., Vollmar B., Guthoff R. In vivo confocal microscopic evaluation of Langerhans cell density and distribution in the normal human corneal epithelium. Graefes Arch Clin Exp Ophthalmol. 2005; 243:1056-1061.
13. Guthoff R.F., Baudouin C., Stave J. Atlas of confocal laser scanning invivo microscopy in opthalmology. Principles and applications in diagnostic and therapeutic ophtalmology. SpringerVerlag Berlin Heidelberg; 2006. 34 p.
14. Petrov S.Yu., Fokina N.D., Sherstneva L.V., Vostrukhin S.V., Safonova D.M. Primary glaucoma etiology: current theories and researches. Ophthalmologic vedomosti. 2015; 8(2):47-56. (In Russ.).
15. Rukina D.A., Dogadova L.P., Markelova E.V., Abdullin E.A., Osykhovskii A.L., Khokhlova A.S. Immunologic aspects of primary openangle glaucoma pathogenesis. RMJ Clinical Ophthalmology. 2011; 12(4):162-165. (In Russ.).
16. Avetisov S.E., Surnina Z.V., Novikov I.A., Makhotin S.S. New approaches to assess the condition of nerve fibers of the cornea. In: VIII Russian national ophthalmological forum. Col. Sci. P. 2015: 48-50. (In Russ.).
17. Avetisov S.E., Novikov I.A., Makhotin S.S., Surnina Z.V. Calculation of the coefficients of anisotropy and symmetry of the nerve orientation of the cornea on the basis of automated recognition of digital confocal images. Medical equipment. 2015; 3:23-25. (In Russ.).
18. Strakhov V.V., Alekseev V.V., Popova A.A., Al-Mrrani A.M. Intraocular asymmetry of thickness of iris and sclera according to ultrasound biomicroscopy in normal and with primary open-angle glaucoma. RMJ Clinical Ophthalmology. 2012; 13(4):118-120. (In Russ.).
19. Strakhov V.V., Ermakova A.V., Korchagin N.V., Kasanova S.Yu. Asymmetry of the tonometric, hemodynamic, and bioretinometric parameters of paired eyes in norm and in primary glaucoma. Glaucoma. 2008; 4:11-16. (In Russ.).
20. Deev L.A., Molchanov V.V., Malakhova A.I., Andreeva O.V. Classification of pathomorphological changes in the cornea in the background of the terminal stage of primary glaucoma. Glaucoma. 2010;4:3-9. (In Russ.).
21. Malakhova A.I., Deev L.A., Molchanov V.V. Changes in the cornea in patients with primary open-angle glaucoma. National Journal glaucoma. 2015; 14 (1):84-93. (In Russ.).
22. Yunkerov V.I., Grigoriev S.E. Matematiko-statisticheskaya obrabotka dannykh meditsinskikh issledovaniI. [Mathematical-statistical processing of medical research data]. St. Petersburg: Military Medical Academy; 2002. 266 p. (In Russ.).
23. Peat J., Barton B. Medical statistics: a guide to data analysis and critical appraisal NY: Blackwell Publishing, 1st ed. 2005. 324 p.
24. Egorova G.B., Fedorov A.A., Averich V.V. Morphological changes in glaucoma against a background of increased IOP and with prolonged hypotensive therapy based on the results of confocal microscopy of the cornea. RMJ Clinical Ophthalmology. 2016; 3:113-117. (In Russ.).
25. Ranno S., Fogagnolo P., Rossetti L., Orzalesi N., Nucci P. Changes in corneal parameters at confocal microscopy in treated glaucoma patients. Clin ophthalmol. 2011; 5:1037-1042.
26. Masters B.R. Confocal microscopy: history, principles, instruments, and some applications to the living eye. Comments Mol Cell Biophys. 1995; 8(5):243-271.
27. Muller L.J., Vrensen G.F., Pels L., Cardozo B.N., Willekens B. Architecture of human corneal nerves. Invest Ophtalmol Vis Sci. 1997; 38:985-994.
28. Muller L.J., Marfurt C.F., Kruse F., Tervo T.M. Corneal nerves: structure, contents and function. Exper Eye Res. 2003; 76:521-542.
29. Tavakoli M., Hossain P., Malik R.A. Clinical application of corneal confocal microscopy. Clin Ophtalmol. 2008; 2(2):435-445.
30. Scarpa F., Grisan E., Ruggeri A. Automatic recognition of corneal nerve structures in images from confocal microscopy. Invest Ophthalmol Vis Sci. 2008; 49:4801-4807.
31. Prydal J.I., Kerr Muir M.G., Dilly P.N., Corbett M.C., Verma S., Marshall J. Confocal microscopy using oblique sections for measurement of corneal epithelial thickness in conscious humans. Acta Ophthalmol Scand. 1997; 75:624–628.
32. Petroll W.M., Jester J.V., Cavanagh H.D. In vivo confocal imaging. Int Rev Exp Pathol. 1996; 36:93–129.
33. Kоhler B., Allgeier S., Eberle F. et al. Image reconstruction of the corneal subbasal nerve plexus with extended field of view from focus image stacks of a confocal laser scanning microscope. Klin Monatsbl Augenheilkd. 2011; 228:1060–1066.
34. Oliveira-Soto L., Efron N. Morphology of corneal nerves using confocal microscopy. Cornea. 2001; 20:374–384.
35. Masters B.R., Thaer A.A. In vivo human corneal confocal microscopy of identical fields of subepithelial nerve plexus, basal epithelial, and wing cells at different times. Microsc Res Tech. 1994; 29:350–356.
36. Avetisov S.A., Egorova G.B., Fedorov A.A. et al. Confocal microscopy of the cornea. Message 1. Features of a normal morphological picture. Vestn Oftalmol. 2008; 3: 3-5. (In Russ.).
37. Tkachenko N.V., Astakhov Yu.S. Diagnostic possibilities of confocal microscopy in the investigation of the surface structures of the eyeball. Ophthalmologic vedomosti. 2009; 2(1):82-89. (In Russ.).
38. Stein G.I. Rukovodstvo po konfokal’noi mikroskopiI. [Manual on confocal microscopy]. Sankt-Peterburg: INC RAS; 2007:6-10. (In Russ.).
39. Marfurt C.F., Cox J., Deek S., Dvorscak L. Anatomy of the human corneal innervations. Exper Eye Res. 2009; 90:478-492.
40. Jalbert I., Stapleton F., Papas E., Sweeney D.F., Coroneo M. In vivo confocal microscopy of the human cornea. Br J Ophthalmol. 2003; 87(2):225-236.
41. Efron N., Perez-Gomez I., Mutalib H.A. Confocal microscopy of the human cornea. Cont Lens Anterior Eye. 2001: 24:16-24.
42. Burgoyne C.F., Downs J.C., Bellezza A.J. at al. The optic nerve head as biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Progr Retin Eye Res. 2005; 24:19-73.
43. Burgoyne C.F., Morrison J.C. The anatomy and pathophysiology of the optic nerve head in glaucoma. J Glaucoma. 2001; 10(5):16-18.
44. Quigley H., Anderson D. Distribution of axonal transport blockade by acute intraocular pressure elevation in the primate optic nerve head. Invest Ophthalmol Vis Sci. 1977; 16(7):640-644.
45. Quigley H., Addicks E.M., Green W.R. Optic nerve damage in human glaucoma. Arch Ophthalmol. 1982; 100:135-146.
46. Kuroedov A.V., Gorodnichiy V.V. Komp’juternaya retinotomografiya (HRT): diagnostika, dinamika, dostovernost’. [Computed tomography (HRT): diagnostics, dynamics, authenticity.] Moscow: Stolichniy bisnes; 2007. 231 p. (In Russ.).
47. Khaitov R.M., Pinegin B.V., Yarilin A.A. Rukovodstvo po klinicheskoy immunologii. [Manual of clinical immunology.] Moscow: Geotarmedia; 2009. 308-311. (In Russ.).
48. Lyashenko A.A. Cytokines and molecular basis of age diseases. Clinical gerontology. 2003; 3:45-54. (In Russ.).
49. Slepova O.S., Arapiev M.U., Lovpache J.N. et al. Peculiarities of local and systemic cytokine status in healthy people of different ages and patients with the initial stage of primary open-angle glaucoma. National Journal of Glaucoma 2016; 15(1):3-12. (In Russ.).
50. Novikov D.K., Generalov I.I. Danyushenkova N.M. Medicinskaya mikrobiologiya. [Medical microbiology]. Vitebsk; 2010. 597 p. (In Russ.).
Review
For citations:
Popova A.A., Strakhov V.V., Murashov A.A., Shirina N.Yu., Surnina Z.V., Malakhova A.I., Klimova O.N. Research of Langerhans cells in the subepithelial corneal nerve fiber layer in primary open-angle glaucoma. National Journal glaucoma. 2019;18(2):47-59. (In Russ.) https://doi.org/10.25700/NJG.2019.02.06