Preview

National Journal glaucoma

Advanced search

Glaucoma without any structural alterations of the optic disc. Is it possible? Part 2

https://doi.org/10.25700/NJG.2020.04.01

Abstract

PURPOSE: To perform a detailed individual analysis of pathological parameters of the optic disc, peripapillary retina and macular ganglion cell complex in eyes with the disc area of 1.63–2.43 mm2 and different stages of glaucoma.

MATERIALS AND METHODS: The study included 64 patients (76 eyes) aged 63.3±8.7 years, among them 35 male and 29 female patients with stage I (35 eyes), stage II (21 eyes) and stage III (20 eyes) glaucoma. Tomographic parameters of the retina were measured with optical coherence tomography (OCT) and Heidelberg laser retinal tomography (HRT) using a modified program by V.A. Machekhin, with consideration of the individual disc size, regression analysis and color coding of pathological parameters of the optic disc and peripapillary retina.

RESULTS: Pathologically similar parameters that showed different relations between the tomographic results were divided into 3 subgroups: a) with equivalent results according to both methods; b) with the advantage of HRT method; c) with the advantage of OCT method.

CONCLUSIONS: Examination of the optic disc parameters and adjacent retina using both HRT and OCT methods complementing each other can help improve the understanding of the glaucomatous processes.

About the Authors

V. A. Machekhin
S.N. Fyodorov National Medical Research Center "MNTK "Eye Microsurgery",Tambov branch; Derzhavin Tambov State University, Medical Institute
Russian Federation

Med.Sc.D., Professor, Chief Scientific Consultant

1 Rasskazovskoe highway, Tambov, 392000,

93 Sovetskaya st., Tambov, 392000



V. A. Lvov
S.N. Fyodorov National Medical Research Center "MNTK "Eye Microsurgery",Tambov branch; Derzhavin Tambov State University, Medical Institute
Russian Federation

Ophthalmologist

1 Rasskazovskoe highway, Tambov, 392000,

93 Sovetskaya st., Tambov, 392000



References

1. Rossetti L., Digiuni M., Giovanni M. et al. Blindness and glaucoma: a multicenter data review from 7 Academic Eye Clinics. PLoS ONE. 2015; 10(8):e0136632. doi:10.1371/journal.pone.0136632

2. Tatham A., Medeiros F., Zangwill L., Weinreb R. Strategies to improve early diagnosis in glaucoma. Progress in brain research. 2015; 221: 103-133. doi:10.1016/bs.pbr.2015.03.001

3. Machekhin V.A., Bondarenko O.A., Savilova E.L. Optimization of the analysis of retinal tomography examination data. Certificate of state registration of a computer program. N. 2008614495. 2008. (In Russ.).

4. Machekhin V.A. Retinotomograficheskie issledovaniya diska zritel'nogo nerva v norme i pri glaukome [Retinal tomographic examination of optic disc in normal subjects and glaucoma patients]. Moscow, Oftal'mologiya Publ.; 2011. 334 p. (In Russ.).

5. Machekhin V.A. Our experience in evaluation of morphometric parameters of eye nerve disc of glaucoma patients. Vestnik Tambovskogo universiteta. 2013; 18(1):265-272. (In Russ.).

6. Machekhin V.A., Fabrikantov O.L. Color topography of OD pathological parameters by means of laser scanning retinal tomograph HRT III. Bulgarian Forum Glaucoma. Edition of the National Academy Glaucoma Foundation. 2014; 4(1):13-20. (In Russ.).

7. Machekhin V.A., Fabrikantov O.L. Heidelberg retinal tomography of the optic disc in the early diagnosis of glaucoma. Vestnik oftal'mologii. 2017; 133(4):17-24. (In Russ.). doi: 10.17116/oftalma2017133417-24.

8. Hayreh S.S. Optic disc changes in glaucoma. Brit J Ophthalmol. 1972; 56:175-175.

9. Quigley H., Anderson D.R. The dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve. Invest Ophthalmol Vis Sci. 1976; 15(8):606-616.

10. Miller K.M., Quigley H.A. The clinical appearance of the lamina cribrosa as a function of the extent of glaucomatous optic nerve damage. Ophthalmol. 1988; 95(1):135-138. doi: 10.1016/S0161-6420(88)33219-7

11. Volkov V.V. Glaukoma otkrytougol'naya [Open-angle glaucoma]. Moscow, MIA Publ.; 2008. 348 p. (In Russ.).

12. Nesterov A.P. Pervichnaya glaucoma [Primary glaucoma]. Moscow: Medicine; 1982. 286 p. (In Russ.).

13. Inoue R., Hangai M., Kotera Y. et al. Three-dimensional high-speed optical coherence tomography imaging of lamina cribrosa in glaucoma. Ophthalmol. 2009; 116(2):214-222.

14. Chung H.S., Sung K.R., Lee J.Y., Na J.H. Lamina cribrosa-related parameters assessed by optical coherence tomography for prediction of future glaucoma progression. Curr Eye Res. 2016; 41(6):806-813. doi: 10.3109/02713683.2015.1052519

15. Tan N.Y., Koh V., Girard M.J., Cheng C.Y. Imaging of the lamina cribrosa and its role in glaucoma: a review. Exp Ophthalmol. 2018; 46(2):177-188. doi: 10.1111/ceo.13126

16. Turgut B. Pearls for correct assessment of optic disc at glaucoma diagnosis. US Ophthalmic Rev. 2017; 10(2):104-110. doi: 10.17925/USOR.2017.10.02.10

17. Faridi O.S., Park S.C., Kabadi R. et al. Effect of focal lamina cribrosa defect on glaucomatous visual field progression. Ophthalmology. 2014; 121(8):1524-1530. doi: 10.1016/j.ophtha.2014.02.01

18. Wang Bo, Nevins J.E., Nadler Z. et al. Reproducibility of in-vivo OCT measured three-dimensional human lamina cribrosa microarchitecture. Invest Ophthalmol Vis Sci. 2014; 9(4):e95526. doi: 10.1371/journal.pone.0095526

19. Ren R., Yang H., Gardiner S.K., Fortune B., Hardin C., Demirel S. et al. Anterior lamina cribrosa surface depth, age, and visual field sensitivity in the Portland progression project. Invest Ophthalmol Vis Sci. 2014; 55(3):1531-1539. doi: 10.1167/iovs.13-13382

20. Zhao Q., Qian X., Li L. et al. Effect of elevated intraocular pressure on the thickness changes of cat laminar and prelaminar tissue using optical coherence tomography. Biomed Mater Eng. 2014; 24(6):2349- 2360. doi: 10.3233/BME-141048

21. Kim M., Bojikian K.D., Slabaugh M.A. Lamina depth and thickness correlate with glaucoma severity. Indian J Ophthalmol. 2016; 64(5):358- 363. doi:10.4103/0301-4738.185594

22. Yang H., Williams G., Downs J.C. et al. Posterior (outward) migration of the lamina cribrosa and early cupping in monkey experimental glaucoma. Invest Ophthalmol Vis Sci. 2011; 52(10):7109-7121. doi: 10.1167/iovs.11-7448

23. Park H.Y., Kim S.I., Park C.K. Influence of the lamina cribrosa on the rate of global and localized retinal nerve fiber layer thinning in open-angle glaucoma. Medicine. 2017; 96(14):e6295. doi:10.1097/MD.0000000000006295

24. Park S.C., Hsu A.T., Su D. Factors associated with focal lamina cribrosa defects in glaucoma. Invest Ophthalmol Vis Sci. 2013; 54(13): 8401–8407. doi:10.1167/iovs.13-13014

25. Tatham A.J., Miki A., Weinreb R.N. Defects of the lamina cribrosa in eyes with localized retinal nerve fiber layer loss. Ophthalmol. 2014; 121(1):110-118. doi:10.1016/j.ophtha.2013.08.018

26. Lee K.M., Kim T.W., Weinreb R.N. Anterior lamina cribrosa insertion in primary open-angle glaucoma patients and healthy subjects. PLoS One. 2014; 9(12):1-17. doi:10.1371/journal.pone.0114935

27. Akagi T., Hangai M., Takayama K. et al. In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci. 2012; 53(7):4111-4119. doi:10.1136/bjophthalmol-2013-304751

28. Nadler Z., Wang B., Wollstein G. et al. Repeatability of in vivo 3D lamina cribrosa microarchitecture using adaptive optics spectral domain optical coherence tomography. Biomed Opt Express. 2014; 5(4):1114- 1123. doi:10.1364/BOE.5.001114

29. Abe R.Y., Gracitelli C.P.B., Diniz-Filho A. Lamina cribrosa in glaucoma: diagnosis and monitoring. Curr Ophthalmol Rep. 2015; 3(2):74- 84. doi:10.1007/s40135-015-0067-7

30. Saba A., Usmani A., Ul Islam Q., Assad T. Unfolding the enigma of lamina cribrosa morphometry and its association with glaucoma. Pak J Med Sci. 2019; 35(6):1730-1735.31

31. Burgoyne C. Morphological difference between glaucoma and other optical Neuropathies. Neuro-ophthalmol. 2015 Sup; 35 Sup 1 (0 1):8-21. doi:10.1097/WNO.000000000000028931

32. Yap T.E., Balendra S.I., Almonte M.T., Cordeiro M.F. Retinal correlates of neurological disorders. Ther Adv Chronic Dis. 2019; 10: 2040622319882205. doi:10.1177/2040622319882205

33. Mimouni M., Htiebel-Kalish H., Serov I. et al. Optical coherence tomography may help distinguish glaucoma from suprasellar tumorassociated optic disc. Hindawi J Ophthalmol. 2019. ID 3564809. doi:10.1155/2019/3564809

34. Bradshaw J., Saling M., Hopwood M. et al. Fluctuating cognition in dementia with Lewy bodies and Alzheimer’s disease is qualitatively distinct. J Neurol Neurosurg Psychiatry. 2004; 75:382–387. doi:10.1136/JNNP.2002.002576

35. Erichev V.P., Tumanov V.P., Panyushkina L.A. Glaucoma and neurodegenerative diseases. Glaukoma. 2012; 1:62-68. (In Russ.).

36. Kumar A., Singh A. Ekavali. A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep. 2015; 67:195–203. doi:10.1016/j.pharep.2014.09.004

37. Hart N.J., Koronyo Y., Black K.L., et al. Ocular indicators of Alzheimer’s: exploring disease in the retina. Acta Neuropathol. 2016; 132: 767–787. doi:10.1007/s00401-016-1613-6

38. Natsional'noe rukovodstvo po glaukome (putevoditel') dlya poliklinicheskikh vrachey [National glaucoma guide for polyclinic doctors]. Eds by E.A. Egorov, Yu.S. Astakhov, A.G. Shchuko. Moskva: Stolichnyy biznes; 2008. 136 p. (In Russ.).


Review

For citations:


Machekhin V.A., Lvov V.A. Glaucoma without any structural alterations of the optic disc. Is it possible? Part 2. National Journal glaucoma. 2020;19(4):3-11. (In Russ.) https://doi.org/10.25700/NJG.2020.04.01

Views: 644


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)