Preview

National Journal glaucoma

Advanced search

Differential diagnostic signs of glaucoma in patients with high myopia

https://doi.org/10.25700/NJG.2020.04.08

Abstract

Clinical and population-based studies have shown that moderate and high myopia is associated with an increased risk of primary open-angle glaucoma (POAG), normal pressure glaucoma, and ophthalmic hypertension. The combination of these eye pathologies amplifies the risk of decreased vision and can lead to blindness. In eyes with myopia, false overdiagnosis or underdiagnosis are common when specific differences between glaucoma and myopic changes are not taken into account. Therefore, it is necessary to develop standards for the diagnosis and monitoring of the glaucoma process in patients with axial myopia, especially considering that the diversity of data, as well as the inconsistency of ideas about the typical signs of glaucoma in patients with myopia, make it difficult to diagnose, and can result in late detection and decrease in the effectiveness of observation of this group of patients. This review analyzes the results of various diagnostic methods for glaucoma in patients with axial myopia, and pays special attention to functional and anatomical changes in axial myopia and glaucoma.

About the Authors

O. G. Zvereva
Adamyuk Republican Clinical Ophthalmological Hospital; Kazan State Medical Academy — branch of Russian Medical Academy of Continuous Professional Education
Russian Federation

Head of Glaucoma Cabinet, teaching assistant

14 Butlerova st., Каzan, 420012, 

36 Butlerova st., Kazan, 420012



E. A. Lyakhova
Adamyuk Republican Clinical Ophthalmological Hospital
Russian Federation

Ophthalmologist

36 Butlerova st., Kazan, 420012



A. V. Seleznev
Ivanovo State Medical Academy
Russian Federation

Ph.D., Associate Professor, Otorhinolaryngology and Ophthalmology Department

8 Sheremetevsky prosp., Ivanovo, 153012



I. R. Gazizova
Institute of Experimental Medicine
Russian Federation

12 Akademika Pavlova st., St. Petersburg, 197376



A. Yu. Brezhnev
Kursk State Medical University, Department of Ophthalmology
Russian Federation

Ph.D., Associate Professor of Ophthalmology Department

3 K. Marksa st., Kursk, 305041



A. V. Kuroyedov
Mandryka Central Military Clinical Hospital; Pirogov Russian National Research Medical University (RNRMU)
Russian Federation

Med.Sc.D., Professor, Head of Ophthalmology Department, Head of Ophthalmology Ward

8A Bolshaya Olenya st., Moscow, 107014,

1 Ostrovityanova st., Moscow, 1179972



References

1. National Guidelines for Glaucoma: Manual for the doctors, 4th ed. E.A. Egorov, V.P. Erichev, eds. Moscow: GEOTAR-Media Publ.; 2019. 384 p. (In Russ.).

2. Myopia. In: Ophthalmology: clinical practice guidelines. V.V. Neroev, ed. Moscow: GEOTAR-Media; 2019: 228-266. (In Russ.).

3. Pan C.W., Dirani M., Cheng C.Y., Wong T.Y., Saw S.M. The age-specific prevalence of myopia in Asia: a meta-analysis. Optom Vis Sci. 2015; 92(3):258-266. doi: 10.1097/OPX.0000000000000516

4. Holden B.A., Fricke T.R., Wilson D.A. et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016; 123(5):1036-1042. doi: 10.1016/j.ophtha.2016.01.006

5. Koh V., Yang A., Saw S.M. et al. Differences in prevalence of refractive errors in young Asian males in Singapore between 1996-1997 and 2009-2010. Ophthalmic Epidemiol. 2014; 21(4):247-255. doi: 10.3109/09286586.2014.928824

6. Wong T.Y., Foster P.J., Hee J. et al. Prevalence and risk factors for refractive errors in adult Chinese in Singapore. Invest Ophthalmol Vis Sci. 2000; 41(9):2486-2494.

7. Marcus M.W., de Vries M.M., Junoy Montolio F.G., Jansonius N.M. Myopia as a risk factor for open-angle glaucoma: a systematic review and meta-analysis. Ophthalmology. 2011; 118(10):1989-94.e2. doi: 10.1016/j.ophtha.2011.03.012

8. Cedrone C., Mancino R., Ricci F. et al. The 12-year incidence of glaucoma and glaucoma-related visual field loss in Italy: the Ponza eye study. J Glaucoma. 2012; 21(1):1-6. doi: 10.1097/IJG.0b013e3182027796

9. Czudowska M.A., Ramdas W.D., Wolfs R.C. et al. Incidence of glaucomatous visual field loss: a ten-year follow-up from the Rotterdam Study. Ophthalmology. 2010; 117(9):1705-1712. doi: 10.1016/j.ophtha.2010.01.034

10. Aghamollaei H., Nejat F., Jadidi K. Evaluating the effectiveness of education in improving public knowledge and awareness of glaucoma. J Ophthalmic Vis Res. 2019; 14(1):121-122. doi: 10.4103/jovr.jovr_55_18

11. Knapp A. Glaucoma in myopic eyes. Trans Am Ophthalmol Soc. 1925; 23:61-70.

12. Podos S.M., Becker B., Morton W.R. High myopia and primary openangle glaucoma. Am J Ophthalmol. 1966; 62(6):1038-1043.

13. Abdalla M.I., Hamdi M. Applanation ocular tension in myopia and emmetropia. Br J Ophthalmol. 1970; 54(2):122-125. doi:10.1136/bjo.54.2.122

14. Akopyan A.I., Erichev V.P., Iomdina E.N. Importance of fibrous capsule's biomechanical properties in interpretation of development of the glaucoma, myopia and their combination pathology. Glaucoma. 2008; 1:9-14. (In Russ.).

15. Lu F., Xu S., Qu J. et al. Central corneal thickness and corneal hysteresis during corneal swelling induced by contact lens wear with eye closure. Am J Ophthalmol. 2007; 143(4):616-622. doi:10.1016/j.ajo.2006.12.031

16. Detry-Morel M. Facteurs de risque : la myopie [Is myopia a risk factor for glaucoma?]. J Fr Ophtalmol. 2011; 34(6):392-395. doi: 10.1016/j.jfo.2011.03.009

17. Pepose J.S., Feigenbaum S.K., Qazi M.A. et al. Changes in corneal biomechanics and intraocular pressure following LASIK using static, dynamic, and noncontact tonometry. Am J Ophthalmol. 2007; 143(1):39-47. doi: 10.1016/j.ajo.2006.09.036

18. Hosny M., Alio J.L., Claramonte P. et al. Relationship between anterior chamber depth, refractive state, corneal diameter, and axial length. J Refract Surg. 2000; 16(3):336-340.

19. Yong K.L., Gong T., Nongpiur M.E. et al. Myopia in asian subjects with primary angle closure: implications for glaucoma trends in East Asia. Ophthalmology. 2014; 121(8):1566-1571. doi: 10.1016/j.ophtha.2014.02.006

20. Shkrebets G.V., Ovsyannikov V.G. Structural features of the iridociliary system of the eye in patients with glaucoma in combination of myopia with the position of modern diagnostic methods. Journal of Fundamental Medicine and Biology. 2013; 1. (In Russ.)

21. Nakamura M., Kato K., Kamata S. et al. Effect of refractive errors on multifocal VEP responses and standard automated perimetry tests in a single population. Doc Ophthalmol. 2014; 128(3):179-189. doi: 10.1007/s10633-014-9431-4

22. Koller G., Haas A., Zulauf M. et al. Influence of refractive correction on peripheral visual field in static perimetry. Graefes Arch Clin Exp Ophthalmol. 2001; 239(10):759-762. doi: 10.1007/s004170100366

23. Rudnicka A.R., Edgar D.F. Automated static perimetry in myopes with peripapillary crescents. Part II. Ophthalmic Physiol Optics. 1996; 16(5):416-429.

24. Du C., Wu X., Wang J. [The correlation between changes of static central visual fields and posterior polar lesions in high myopia]. Zhonghua Yan Ke Za Zhi [Chinese J Ophthalmology]. 1995; 31(4):264-267.

25. Kimura Y., Hangai M., Morooka S. et al. Retinal nerve fiber layer defects in highly myopic eyes with early glaucoma. Invest Ophthalmol Vis Sci. 2012; 53(10):6472-6478. doi: 10.1167/iovs.12-10319

26. Hangai M., Ikeda H.O., Akagi T., Yoshimura N. Paracentral scotoma in glaucoma detected by 10-2 but not by 24-2 perimetry. Jpn J Ophthalmol. 2014; 58(2):188-196. doi: 10.1007/s10384-013-0298-9

27. Lee Y.A., Shih Y.F., Lin L.L. et al. Association between high myopia and progression of visual field loss in primary open-angle glaucoma. J Formos Med Assoc. 2008; 107(12):952-957. doi: 10.1016/S0929-6646(09)60019-X

28. Aung T., Foster P.J., Seah S.K. et al. Automated static perimetry: the influence of myopia and its method of correction. Ophthalmology. 2001; 108 (2):290-295. doi: 10.1016/s0161-6420(00)00497-8

29. Koller G., Haas A., Zulauf M. et al. Influence of refractive correction on peripheral visual field in static perimetry. Graefes Arch Clin Exp Ophthalmol. 2001; 239(10):759-762. doi: 10.1007/s004170100366

30. Niederhauser S., Mojon D.S. In kinetic perimetry high refractive errors also influence the isopter position outside the central 30 degrees. Klin Monbl Augenheilkd. 2002; 219(4):201-205. doi: 10.1159/000067554

31. Yamashita T., Kii Y., Tanaka M. et al. Relationship between super- normal sectors of retinal nerve fibre layer and axial length in normal eyes. Acta Ophthalmol. 2014; 92(6):e481-7. doi: 10.1111/aos.12382

32. Zeimer R.C., Ogura Y. The relation between glaucomatous damage and optic nerve head mechanical compliance. Arch Ophthalmol. 1989; 107 (8): 1232-4. doi: 10.1001/archopht.1989.01070020298042

33. Erichev V.P., Akopyan A.I. Сorrelation relationships of parameters of retinotomographic research. Glaucoma. 2006; 2:24-28. (In Russ.).

34. Akopyan A.I. Differential diagnostic criteria for changes in the optic nerve head in glaucoma and myopia. Moscow; 2008. (In Russ.).

35. Hwang Y.H., Kim Y.Y., Jin S. et al. Errors in neuroretinal rim measure- ment by Cirrus high-definition optical coherence tomography in myo- pic eyes. Br J Ophthalmol. 2012; 96(11):1386-1390. doi: 10.1136/bjophthalmol-2012-301713

36. Kubasik-Kładna K., Karczewicz D. Ocena morfologii tarczy nerwu wzrokowego w oczach krótkowzrocznych w zalezności od wielkości wady [Morphology of the optic nerve disc in eyes with myopia in cor- relation to the refractive error]. Klin Oczna. 2013; 115(1):20-24.

37. Gvozdenović R., Risović D., Marjanović I. et al. Morphometric characteristics of optic disc in patients with myopia and primary openangle glaucoma. Vojnosanit Pregl. 2013; 70(1):51-56. doi: 10.2298/vsp111229024g

38. Mizumoto K., Gosho M., Zako M. Correlation between optic nerve head structural parameters and glaucomatous visual field indices. Clin Ophthalmol. 2014; 8:1203-1208. doi: 10.2147/OPTH.S62521

39. Zheng F., Wu Z., Leung C.K.S. Detection of Bruch's membrane opening in healthy individuals and glaucoma patients with and without high myopia. Ophthalmology. 2018; 125(10):1537-1546. doi: 10.1016/j.ophtha.2018.04.031

40. Rao H.L., Yadav R.K., Addepalli U.K. et al. Comparing spectral-domain optical coherence tomography and standard automated perime- try to diagnose glaucomatous optic neuropathy. J Glaucoma. 2015; 24(5):e69-74. doi: 10.1097/IJG.0000000000000048

41. Renard J.P., Fénolland J.R., El Chehab H. et al. Analyse du com- plexe cellulaire ganglionnaire maculaire (GCC) en tomographie par cohérence optique (SD-OCT) dans le glaucome [Analysis of macu- lar ganglion cell complex (GCC) with spectral-domain optical coherence tomography (SD-OCT) in glaucoma]. J Fr Ophtalmol. 2013; 36(4):299-309. doi: 10.1016/j.jfo.2013.01.005

42. Ishida T., Jonas J.B., Ishii M. et al. Peripapillary arterial ring of ZinnHaller in highly myopic eyes as detected by optical coherence tomography angiography. Retina. 2017; 37(2):299-304. doi: 10.1097/IAE.0000000000001165

43. Shchuko A.G., Yur'eva T.N. Algoritmy diagnostiki i lecheniya bol'nyh pervichnoj glaukomoj. [Algorithms for the diagnosis and treatment of patients with primary glaucoma]. Irkutsk; 2008: 76 p. (In Russ.).

44. Zhukova S.I., Yur'eva T.N., Pomkina I.V., Grishchuk A.S. Bioretino- metric criteria for the diagnostics of glaucoma associated with myo- pia. Natsional'nyi zhurnal glaukoma. 2019; 18(1):3-9. (In Russ.).

45. Downs J.C., Roberts M.D., Burgoyne C.F. Mechanical environment of the optic nerve head in glaucoma. Optom Vis Sci. 2008; 85(6): 425-435. doi: 10.1097/OPX.0b013e31817841cb

46. Tan N.Y., Koh V., Girard M.J., Cheng C.Y. Imaging of the lamina cribro- sa and its role in glaucoma: a review. Clin Exp Ophthalmol. 2018; 46 (2):177-188. doi: 10.1111/ceo.13126

47. Yeri A., Courtright A., Reiman R. et al. Total extracellular small RNA profiles from plasma, saliva, and urine of healthy subjects. Sci Rep. 2017; 7:44061. doi: 10.1038/srep44061

48. Han J.C., Cho S.H., Sohn D.Y., Kee C. The characteristics of lamina cribrosa defects in myopic eyes with and without open-angle glau- coma. Invest Ophthalmol Vis Sci. 2016; 57(2):486-494. doi: 10.1167/iovs.15-17722

49. Sawada Y., Araie M., Kasuga H. et al. Focal lamina cribrosa defect in myopic eyes with nonprogressive glaucomatous visual field defect. Am J Ophthalmol. 2018; 190:34-49. doi: 10.1016/j.ajo.2018.03.018

50. Shevchenko M.V., Shugurova N.E. Clinical evaluation of biomechanical features of the fibrous membrane in patients with glaucoma in combination with myopic refraction. Samara Scientific Center of the Russian Academy of Sciences. 2015; 17:5-3. (In Russ.).


Review

For citations:


Zvereva O.G., Lyakhova E.A., Seleznev A.V., Gazizova I.R., Brezhnev A.Yu., Kuroyedov A.V. Differential diagnostic signs of glaucoma in patients with high myopia. National Journal glaucoma. 2020;19(4):64-72. (In Russ.) https://doi.org/10.25700/NJG.2020.04.08

Views: 813


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)