Lamina cribrosa curvature index and its relationship with morphofunctional and microcirculatory disorders in glaucoma
Abstract
PURPOSE. To study the relationship of the lamina cribrosa curvature index with morphofunctional and microvascular parameters in glaucoma.
METHODS. The lamina cribrosa curvature index (LCCI) was studied using optical coherence tomography (OCT) in 108 patients (108 eyes) with primary open-angle glaucoma and 45 controls (45 eyes) aged 60 to 81 years. Additionally, all subjects underwent OCT measurement of the thickness of retinal nerve fiber layer (RNFL) and ganglion cell complex (GCC), OCT angiography to determine vessel density in the optic nerve disc, macula (fovea and parafovea), as well as measurement of the area of peripapillary choroidal atrophy (PCA), choroidal microvasculature dropout (cMvD) and the peripapillary choroidal thickness (CTp).
RESULTS. LCCI was significantly higher in patients with glaucoma compared to the controls: 7.65±0.17 and 8.68±0.39, respectively (p=0.016). Significant correlations of LCCI with perimeter indices were revealed in glaucoma, but not in the control group: MD (r=-0.563; p<0.01) and PSD (r=0.454; p<0.01), as well as with RNFL parameters (r=-0.509; p<0.01) and GCC (r=-0.618; p<0.01), parafoveal retinal thickness (r=-0.530; p<0.01) and peripapillary choroid (r=-0.518; p<0.01). An inverse relationship was observed between LCCI and capillary density in the ONH (r=-0.480; p<0.01) and in fovea and parafovea (r=-0.455; p<0.01). Larger area of choroidal microvasculature dropout (cMvD) corresponded to higher LCCI values (r=0.506; p<0.01).
CONCLUSION. LCCI is an important biomarker of glaucoma lesions. The relationship of this indicator with the parameters of the microcirculatory bed in the retina, ONH and choroid, as well as with morphofunctional parameters indicates early involvement of the lamina cribrosa in the glaucoma process.
About the Authors
N. I. KuryshevaRussian Federation
Dr. Sci. (Med.), Professor, Head of the Academic Department of Ophthalmology; Head of the Consultative and Diagnostic Department
46-8 Zhivopisnaya St., Moscow, 123098;
15 Gamalei St., Moscow, 123098
V. Yu. Kim
Russian Federation
ophthalmologist at the Consultative and Diagnostic Department;
Assistant Professor at the Academic Department of Ophthalmology
15 Gamalei St., Moscow, 123098;
46-8 Zhivopisnaya St., Moscow, 123098
V. E. Kim
Russian Federation
ophthalmologist at the Consultative and Diagnostic Department;
Assistant Professor at the Academic Department of Ophthalmology
15 Gamalei St., Moscow, 123098;
46-8 Zhivopisnaya St., Moscow, 123098
A. B. Laver
Russian Federation
clinical resident at the Academic Department of Ophthalmology
46-8 Zhivopisnaya St., Moscow, 123098
References
1. Downs J.C., Girkin C.A. Lamina cribrosa in glaucoma. Current opinion in ophthalmology. 2017;28(2):113-119. https://doi.org/10.1097/ICU.0000000000000354
2. Kurenkov V.V., Klyuganov V.S., Kuznetsova N.V., Chinenova K.V., Konovalov M.E., Pozharitsky M.D. Visualization of the Lamina Cribrosa of Sclera Using Optical Coherence Tomography. The Opportunities and Prospects for Diagnostics (Review). Ophthalmology in Russia. 2019;16(2):159-162. (In Russ.) https://doi.org/10.18008/1816-5095-2019-2-159-162
3. Tan N.Y., Koh V., Girard M.J., Cheng C.Y. Imaging of the lamina cribrosa and its role in glaucoma: a review. Clinical & experimental ophthalmology. 2018;46(2):177-188. https://doi.org/10.1111/ceo.13126
4. Strickland R.G., Garner M.A., Gross A.K., Girkin C.A. Remodeling of the Lamina Cribrosa: Mechanisms and Potential Therapeutic Approaches for Glaucoma. International journal of molecular sciences. 2022;23(15):8068. https://doi.org/10.3390/ijms23158068
5. Li L., Song F. Biomechanical research into lamina cribrosa in glaucoma. National science review. 2020;7(8):1277-1279. https://doi.org/10.1093/nsr/nwaa063
6. Arutyunyan L.L., Anisimova S.Yu., Morozova Yu.S., Anisimov S.I. Biometric and morphometric parameters of the lamina cribrosa in patients with different stages of primary openangle glaucoma. National Journal of Glaucoma. 2021;20(3):11–19. (In Russ.) https://doi.org/10.25700/2078-4104-2021-20-3-11-19
7. Kuryshevа N.I., Kim V.Yu. Examination of lamina cribrosa in glaucoma. Point of view. East – West. 2022;2. https://doi.org/10.25276/2410-1257-2022-2-60-66
8. Quigley H.A., Addicks E.M., Green W.R., Maumenee A.E. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Archives of ophthalmology. 1981;99(4):635-649. https://doi.org/10.1001/archopht.1981.03930010635009
9. Luo H., Yang H., Gardiner S.K., Hardin C., et al. Factors Influencing Central Lamina Cribrosa Depth: A Multicenter Study. Investigative ophthalmology & visual science. 2018;59(6):2357-2370. https://doi.org/10.1167/iovs.17-23456
10. Volkov V.V. The three-classification of open-angle glaucoma (based on representations about its pathogenesis). Glaucoma (Russia). 2004. № 1. C. 57–67 (in Russian)
11. Kim M., Bojikian K.D., Slabaugh M.A., Ding L., et al. Lamina depth and thickness correlate with glaucoma severity. Indian Journal of Ophthalmology. 2016;64(5):358-363. https://doi.org/10.4103/0301-4738.185594
12. Naz A.S., Qamar A., Haque S.U., Zaman Y., et al. Association of lamina cribrosa morphometry with retinal nerve fiber layer loss and visual field defects in primary open angle glaucoma. Pakistan journal of medical sciences. 2020;36(3):521-525. https://doi.org/10.12669/pjms.36.3.1553
13. Lee E.J., Kim T.W., Kim M., Kim H. Influence of lamina cribrosa thickness and depth on the rate of progressive retinal nerve fiber layer thinning. Ophthalmology. 2014;122(4)721-729 https://doi.org/10.1016/j.ophtha.2014.10.007
14. Li L., Bian A., Cheng G., Zhou Q. Posterior displacement of the lamina cribrosa in normal-tension and high-tension glaucoma. Acta ophthalmologica. 2016;94(6):e492-e500. https://doi.org/10.1111/aos.13012
15. Lee S.H., Kim T.W., Lee E.J., Girard M.J., et al. Diagnostic Power of Lamina Cribrosa Depth and Curvature in Glaucoma. Investigative ophthalmology & visual science. 2017;58(2):755-762. https://doi.org/10.1167/iovs.16-20802
16. Kim J.A., Kim T.W., Lee E.J., Girard M.J.A., et al. Relationship between lamina cribrosa curvature and the microvasculature in treatment-naïve eyes. The British journal of ophthalmology. 2020;104(3):398-403. https://doi.org/10.1136/bjophthalmol-2019-313996
17. Lee E.J., Kim T.W., Kim J.A., Kim, G.N., et al. Elucidation of the Strongest Factors Influencing Rapid Retinal Nerve Fiber Layer Thinning in Glaucoma. Investigative ophthalmology & visual science. 2019;60(10):3343-3351. https://doi.org/10.1167/iovs.18-26519
18. Lee S.H., Kim T.W., Lee E.J., Girard M.J.A., et al. Lamina Cribrosa Curvature in Healthy Korean Eyes. Scientific Reports. 2019;9:1756. https://doi.org/10.1038/s41598-018-38331-7
19. Kurysheva N.I., Boyarinceva M.A., Fomin A.V. Choroidal thickness in primary angle-closure glaucoma: the results of Measurement by Means of Optical Coherence Tomography. Ophthalmology in Russia. 2013;10(4):26-31. (In Russ.) https://doi.org/10.18008/1816-5095-2013-4-26-31
20. Kurysheva, N.I. Macula in Glaucoma: Vascularity Evaluated by OCT Angiography. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2016;7(5):651–662.
21. Kurysheva, N.I., Shatalova E.O. Parafoveal vessel density dropout may predict glaucoma progression in the long-term follow up. Journal of Ophthalmology and Research. 2022;5:150-166
22. Kim J.A., Kim T.W., Lee E.J., Girard M.J.A., et al. Comparison of Lamina Cribrosa Morphology in Eyes with Ocular Hypertension and Normal-Tension Glaucoma. Investigative ophthalmology & visual science. 2020;61(4):4. https://doi.org/10.1167/iovs.61.4.4
23. Kim J.A., Kim T.W., Weinreb R.N., Lee E.J., et al. Lamina Cribrosa Morphology Predicts Progressive Retinal Nerve Fiber Layer Loss In Eyes with Suspected Glaucoma. Scientific reports. 2018;8(1):738. https://doi.org/10.1038/s41598-017-17843-8
24. Lee E.J., Kim T.W., Kim J.A., Lee S.H., et al. Predictive Modeling of Long-Term Glaucoma Progression Based on Initial Ophthalmic Data and Optic Nerve Head Characteristics. Translational vision science & technology. 2022;11(10):24. https://doi.org/10.1167/tvst.11.10.24
25. Kurenkov V.V., Klyuganov V.S., Kuznetsova N.V., Chinenova K.V., Konovalov M.E., Pozharitsky M.D. Visualization of the Lamina Cribrosa of Sclera Using Optical Coherence Tomography. The Opportunities and Prospects for Diagnostics (Review). Ophthalmology in Russia. 2019;16(2):159-162. (In Russ.) https://doi.org/10.18008/1816-5095-2019-2-159-162
26. Lee P., Chandel N.S., Simon M.C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nature reviews. Molecular cell biology. 2020;21(5):268-283. https://doi.org/10.1038/s41580-020-0227-y
27. Lee S.H., Kim T.W., Lee E.J., Girard, M.J.A., et al. Focal lamina cribrosa defects are not associated with steep lamina cribrosa curvature but with choroidal microvascular dropout. Scientific reports. 2020;10:6761. https://doi.org/10.1038/s41598-020-63681-6
28. Anderson D.R., Braverman S. Reevaluation of the optic disk vasculature. American journal of ophthalmology. 1976;82(2):165-174. https://doi.org/10.1016/0002-9394(76)90414-1
29. Lieberman M.F., Maumenee A.E., Green W.R. Histologic studies of the vasculature of the anterior optic nerve. American journal of ophthalmology. 1976;82(3):405-423. https://doi.org/10.1016/0002-9394(76)90489-x
30. Onda E., Cioffi G.A., Bacon D.R., Van Buskirk E.M. Microvasculature of the human optic nerve. American journal of ophthalmology. 1995;120(1):92-102. https://doi.org/10.1016/s0002-9394(14)73763-8
31. Lee E.J., Kim J.A., Kim T.W. Influence of Choroidal Microvasculature Dropout on the Rate of Glaucomatous Progression: A Prospective Study. Ophthalmology. Glaucoma. 2020;3(1):25-31. https://doi.org/10.1016/j.ogla.2019.10.001
32. Downs J.C., Roberts M.D., Burgoyne C.F. Mechanical environment of the optic nerve head in glaucoma. Optometry and vision science: official publication of the American Academy of Optometry. 2008;85(6):425-435. https://doi.org/10.1097/OPX.0b013e31817841cb
33. Murphy C.G., Yun A.J., Newsome D.A., Alvarado J.A. Localization of extracellular proteins of the human trabecular meshwork by indirect immunofluorescence. American journal of ophthalmology. 1987;104(1):33-43. https://doi.org/10.1016/0002-9394(87)90290-x
34. Arend O., Plange N., Sponsel W.E., Remky A. Pathogenetic aspects of the glaucomatous optic neuropathy: fluorescein angiographic findings in patients with primary open angle glaucoma. Brain research bulletin. 2004;62(6):517-524. https://doi.org/10.1016/j.brainresbull.2003.07.008
35. Kim J.A., Kim T.W., Lee E.J., Girard M.J.A., et al. Microvascular Changes in Peripapillary and Optic Nerve Head Tissues After Trabeculectomy in Primary Open-Angle Glaucoma. Investigative ophthalmology & visual science. 2018;59(11):4614-4621. https://doi.org/10.1167/iovs.18-25038
36. Kurysheva N.I. Assessment of the optic nerve head, peripapillary, and macular microcirculation in the newly diagnosed patients with primary open-angle glaucoma treated with topical tafluprost. Taiwan Journal of Ophthalmology 2019. Vol 9, N2., P.93 – 100. https://doi.org/10.4103/tjo.tjo_108_17
37. Kurysheva N.I., Maslova E.V., Trubilina A.V., Fomin A.V., et al. OCT angiographyand color doppler imaging in glaucoma diagnostics. Journal of Pharmaceutical Sciences and Research. 2017; 9(5): 527–536.52
38. Burgoyne C.F., Downs J.C. Premise and prediction-how optic nerve head biomechanics underlies the susceptibility and clinical behavior of the aged optic nerve head. Journal of glaucoma. 2008;17(4):318-328. https://doi.org/10.1097/IJG.0b013e31815a343b
39. Burgoyne C.F. A biomechanical paradigm for axonal insult within the optic nerve head in aging and glaucoma. Experimental eye research. 2011;93(2):120-132. https://doi.org/10.1016/j.exer.2010.09.005
Supplementary files
Review
For citations:
Kurysheva N.I., Kim V.Yu., Kim V.E., Laver A.B. Lamina cribrosa curvature index and its relationship with morphofunctional and microcirculatory disorders in glaucoma. National Journal glaucoma. 2023;22(3):15-25. (In Russ.)