Preview

National Journal glaucoma

Advanced search

Comparative analysis of biomechanical parameters of the fibrous membrane of the eye in clinical variants of the course of primary open-angle glaucoma

Abstract

PURPOSE. To analyze the biomechanical parameters of the fibrous membrane of the eye in patients with normaltension glaucoma (NTG) in comparison with primary openangle glaucoma (POAG).

METHODS. The study compared 37 eyes with NTG and 78 eyes with POAG, which were comparable in stages (initial and developed NTG was in 78%, POAG — in 77% of cases), in age (NTG — 63.62±1.9 years, POAG — 59.85±1.1 years (p=0.088)). The control group included 19 healthy eyes. Corneal tomography and biomechanical parameters were measured using Pentacam (Oculus) and Corvus ST, respectively.

RESULTS. The following differences were revealed in NTG compared to POAG: axial length (24.8±2.3 mm, 23.97±2.3 mm, respectively, p<0.01), central corneal thickness (CCT; 513.97± 5.2 µm, 557.7±3.9 µm, respectively, p<0.01). Corneal stiffness in patients with NTG is reduced (DA ratio 4.7±0.07, R 8.9±0.15) in comparison to POAG (DA ratio 4.07±0.08, R 7.56±0.2) with p<0.01. SP-A1 is lower in NTG (101.65±3.8) than in POAG (128.49±2.6), p<0.01. Stress–strain index (SSI) is also reduced in NTG (1.14±0.04) compared to POAG (1.25±0.03), p=0.026. Biomechanical glaucoma factor (BGF) in NTG is 57±3.5; in POAG — 17.1±1.9 (p<0.01). In NTG corneal stiffness is lower than in a healthy eye (DA Ratio 4.02±0.08 and R 7.63±0.2), p<0.01, the differences in other parameters are not significant. POAG differs from a healthy eye only in the increased stiffness of the fibrous membrane SP-A1 (p=0.044). In NTG the P0 pressure did not differ from biomechanically corrected intraocular pressure (bIOP; 13.95±0.5 and 13.96±0.3, respectively) and was lower than in POAG in all stages of glaucoma. At the same time, in NTG the bIOP level did not differ, while in far-advanced stage of POAG it was elevated.

CONCLUSION. NTG differs from POAG in reduced rigidity of the entire fibrous membrane of the eye, and from healthy eyes — in cornea being more prone to displacement.

About the Authors

A. V. Malyshev
Scientific Research Institution — S.V. Ochapovsky Regional Clinic Hospital No. 1; Maykop State Technological University
Russian Federation

Dr. Sci. (Med.), Professor, Head of the Ophthalmology Department; Head of the Academic Department of Ophthalmology

167 Pervogo Maya St., Krasnodar, 350086;

177 Pushkina St., Maykop, 385776



A. S. Apostolova
Eye Clinic OOO "3Z"
Russian Federation

Cand. Sci. (Med.), ophthalmologist-glaucoma specialist

18 Krasnykh Partizan St., Krasnodar, 350047



A. A. Sergienko
Children's Regional Clinical Hospital; Maykop State Technological University
Russian Federation

Cand. Sci. (Med.), ophthalmologist at the Ophthalmology Department;
Assistant Professor at the Academic Department of Ophthalmology

1 Pobedy Square, Krasnodar, 350007

177 Pushkina St., Maykop, 385776



A. F. Teshev
Adygean Republican Clinical Hospital; Maykop State Technological University
Russian Federation

Head of the Ophthalmology Department; Senior Lecturer at the Academic Department of Ophthalmology

4 Zhukovskogo St., Maykop, 385000

177 Pushkina St., Maykop, 385776



G. Yu. Karapetov
Scientific Research Institution — S.V. Ochapovsky Regional Clinic Hospital No. 1
Russian Federation

Cand. Sci. (Med.), ophthalmologist at the Ophthalmology Department

167 Pervogo Maya St., Krasnodar, 350086



M. K. Ashkhamakhova
Adygean Republican Clinical Hospital; Maykop State Technological University
Russian Federation

ophthalmologist at the Ophthalmology Department; employee of the Academic Department of Ophthalmology

4 Zhukovskogo St., Maykop, 385000

177 Pushkina St., Maykop, 385776



U. I. Midaev
Adygean Republican Clinical Hospital; Maykop State Technological University
Russian Federation

ophthalmologist at the Ophthalmology Department; employee of the Academic Department of Ophthalmology

4 Zhukovskogo St., Maykop, 385000

177 Pushkina St., Maykop, 385776



References

1. Kuroedov A.V., Movsisyan A.B., Egorov E.A. et al. The profile of patients with primary open-angle glaucoma in the Russian Federation (preliminary results of a multicenter population-based study). Part 1. Natsional’nyi zhurnal glaukoma 2021; 20(1):3-15. https://doi.org/10.25700/NJG.2021.01.01

2. Machekhin V.A., Fabrikantov O.L. With regard to early detection and medical examination of patients with glaucoma. Prakticheskaya meditsina. Oftal’mologiya 2013; 3-1(69):44-47.

3. Rossetti L., Digiuni M., Giovanni M., et al. Blindness and Glaucoma: A Multicenter Data Review from 7 Academic Eye Clinics. PLoS ONE 2015; 10:8(e0136632). https://doi.org/10.1371/journal.pone.0136632

4. Meek K.M., Knupp C. Corneal structure and transparency. Prog Retin Eye Res 2015; 49:1-16. https://doi.org/10.1016/j.preteyeres.2015.07.001.

5. Okafor K.C., Brandt J.D. Measuring intraocular pressure. Curr Opin Ophthalmol 2015; 26(2):103-109. https://doi.org/10.1097/ICU.0000000000000129

6. Luce D.A. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg 2005; 31(1):156-62. https://doi.org/10.1016/j.jcrs.2004.10.044

7. Roberts C.J., Mahmoud A.M., Bons J.P., Hossain A., Elsheikh A., Vinciguerra R., Vinciguerra P., Ambrósio R. Jr. Introduction of Two Novel Stiffness Parameters and Interpretation of Air Puff-Induced Biomechanical Deformation Parameters With a Dynamic Scheimpflug Analyzer. J Refract Surg 2017; 33(4):266-273. https://doi.org/10.3928/1081597X-20161221-03

8. Avetisov S. E., Bubnova I. A., Antonov A. A. Study of the influence of the biomechanical properties of the cornea on tonometry parameters. Bulletin CO RAMS=Byulleten' SO RAMN 2009; 138(4):30-33.

9. Erichev V. P., Eremina M. V., Yakubova L. V., Arefyeva Yu. A. Analyzer of biomechanical properties of the eye in the assessment of viscoelastic properties of the cornea in healthy eyes. Glaukoma 2007; 6(1):11-15.

10. Erichev V.P., Antonov A.A. Comparison of tonometry values measured with the ICare rebound tonometer and Ocular Response Analyzer. Natsional’nyi zhurnal glaukoma 2012; 2:14-21.

11. Francis B.A., Wang M., Lei H., Du L.T., Minckler D.S., Green R.L., Roland C. Changes in axial length following trabeculectomy and glaucoma drainage device surgery. Br J Ophthalmol 2005; 89(1):17-20. https://doi.org/10.1136/bjo.2004.043950

12. Pradhan Z.S., Deshmukh S., Dixit S., Sreenivasaiah S., Shroff S., Devi S., Webers C.A.B., Rao H.L. A comparison of the corneal biomechanics in pseudoexfoliation glaucoma, primary open-angle glaucoma and healthy controls using Corvis ST. PLoS One 2020; 15(10):e0241296. https://doi.org/10.1371/journal.pone.0241296

13. Wu N., Chen Y., Yang Y., Sun X. The changes of corneal biomechanical properties with long-term treatment of prostaglandin analogue measured by Corvis ST. BMC Ophthalmol 2020; 20(1):422. https://doi.org/10.1186/s12886-020-01693-6.

14. Martínez-Sánchez MI, Bolívar G, Sideroudi H, Teus MA. Effect of prostaglandin analogues on the biomechanical corneal properties in patients with open-angle glaucoma and ocular hypertension measured with dynamic Scheimpflug analyzer. Graefes Arch Clin Exp Ophthalmol 2022; 260(12):3927-3933. https://doi.org/10.1007/s00417-022-05752-0.

15. Karin R. Pillunat, Robert Herber, Eberhard Spoerl, Carl Erb and Lutz E. Pillunat A new biomechanical glaucoma factor to discriminate normal eyes from normal pressure glaucoma eyes. Acta Ophthalmol 2019; 97(7):e962-e967. https://doi.org/10.1111/aos.14115

16. Konieczka K., Ritch R., Traverso C.E., Kim D.M., Kook M.S., Gallino A., Golubnitschaja O., Erb C., Reitsamer H., Kida T., Kurysheva N., Yao K. Flammer syndrome. Natsional’nyi zhurnal glaukoma 2016; 15(4):3-11.

17. Eliasy A., Chen K.J., Vinciguerra R., et al. Determination of Corneal Biomechanical Behavior in-vivo for Healthy Eyes Using CorVis ST Tonometry: Stress-Strain Index. Front Bioeng Biotechnol 2019; 7:105. https://doi.org/10.3389/fbioe.2019.00105

18. Liu G., Rong H., Pei R. et al. Age distribution and associated factors of cornea biomechanical parameter stress-strain index in Chinese healthy population. BMC Ophthalmol 2020; 20(436). https://doi.org/10.1186/s12886-020-01704-6

19. Hong K, Wong IYH, Singh K, Chang RT. Corneal Biomechanics Using a Scheimpflug-Based Noncontact Device in Normal-Tension Glaucoma and Healthy Controls. Asia Pac J Ophthalmol (Phila) 2019; 8(1):22-29. https://doi.org/10.22608/APO.2018334

20. Lin YH, Huang SM, Yeung L, Ku WC, Chen HS, Lai CC, Chuang LH. Correlation of Visual Field With Peripapillary Vessel Density Through Optical Coherence Tomography Angiography in Normal-Tension Glaucoma. Transl Vis Sci Technol 2020; 9(13):26. https://doi.org/10.1167/tvst.9.13.26.

21. Lei Tian, Dajiang Wang, Ying Wu, Xiaoli Meng, Bing Chen, Mei Ge, Yifei Huang. Corneal biomechanical characteristics measured by the CorVis Scheimpflug technology in eyes with primary open-angle glaucoma and normal eyes. Acta Ophthalmol 2016; 94(5):e317-24. https://doi.org/10.1111/aos.12672.


Review

For citations:


Malyshev A.V., Apostolova A.S., Sergienko A.A., Teshev A.F., Karapetov G.Yu., Ashkhamakhova M.K., Midaev U.I. Comparative analysis of biomechanical parameters of the fibrous membrane of the eye in clinical variants of the course of primary open-angle glaucoma. National Journal glaucoma. 2023;22(3):26-33. (In Russ.)

Views: 241


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)