Preview

National Journal glaucoma

Advanced search

Artificial intelligence and neural networks in the diagnosis of glaucoma

https://doi.org/10.53432/2078-4104-2023-22-1-115-128

Abstract

Early diagnosis of glaucoma and objective analysis of data obtained from instrumental study methods is one of the most important problems in ophthalmology. Modern state of technological development allows implementing artificial intelligence and neural networks in the diagnosis and treatment of glaucoma. Special software helps perform perimetry using portable devices, which reduces the workload for medical facilities and lowers the costs of the procedure. Mathematical models allow evaluating the risk of glaucoma progression based on instrumental findings. Artificial intelligence allows assessing the results of Goldman and Maklakov tonometry and determining the state of disease progression by analyzing a series of 2D and 3D data (scan images of optic nerve head, static perimetry etc.) separately, as well as in complex analysis of data from various devices.

About the Authors

D. A. Dorofeev
Municipal Clinical Hospital No. 2, Polyclinic No. 1
Russian Federation

Ophthalmologist, Head of the Glaucoma Office.

200 Rossiyskaya St., Chelyabinsk, Russian Federation, 454090



S. Yu. Kazanova
Central City Hospital
Russian Federation

Head of the Consultative-Diagnostic Department No. 1 (Glaucoma Department).

52 Oktyabrya St., Yaroslavl, Russian Federation, 150040



A. B. Movsisyan
Hospital for War Veterans No. 2; P.V. Mandryka Central Military Clinical Hospital
Russian Federation

Ophthalmologist; postgraduate student, Assistant Professor at the Academic Department of Ophthalmology.

Moscow, 168 Volgogradskiy Pr., Moscow, Russian Federation, 109472

8a Bolshaya Olenya St., Moscow, Russian Federation, 107014



R. P. Poleva
Krasnov Research Institute of Eye Diseases
Russian Federation

Cand. Sci. (Med.), senior researcher at the Department of Modern Treatment Methods in Ophthalmology.

11A Rossolimo St., Moscow, Russian Federation, 119021



References

1. Wiggs JL. Glaucoma Genes and Mechanisms. Prog Mol Biol Transl Sci 2015; 134:315-342. https://doi.org/10.1016/BS.PMBTS.2015.04.008

2. Burdon KP, Mitchell P, Lee A, et al. Association of open-angle glaucoma loci with incident glaucoma in the Blue Mountains Eye Study. Am J Ophthalmol 2015; 159(1):31-36.e1. https://doi.org/10.1016/J.AJO.2014.09.020

3. Normando EM, Yap TE, Maddison J, et al. A CNN-aided method to predict glaucoma progression using DARC (Detection of Apoptosing Retinal Cells). Expert Review of Molecular Diagnostics 2020; 20(7):737-748. https://doi.org/10.1080/14737159.2020.1758067

4. Corazza P, Maddison J, Bonetti P, et al. Predicting wet age-related macular degeneration (AMD) using DARC (detecting apoptosing retinal cells) AI (artificial intelligence) technology. Expert Review of Molecular Diagnostics 2021;21(1):109-118. https://doi.org/10.1080/14737159.2020.1865806

5. Ichhpujani P, Thakur S, Sahi RK, Kumar S. Validating tablet perimetry against standard Humphrey Visual Field Analyzer for glaucoma screening in Indian population. Indian Journal of Ophthalmology 2021; 69(1):87. https://doi.org/10.4103/IJO.IJO_1847_19

6. Prea SM, Kong GYX, Guymer RH, Vingrys AJ. Uptake, Persistence, and Performance of Weekly Home Monitoring of Visual Field in a Large Cohort of Patients With Glaucoma. Am J Ophthalmol 2021; 223:286-295. https://doi.org/10.1016/J.AJO.2020.10.023

7. Jones PR, Lindfield D, Crabb DP. Using an open-source tablet perimeter (Eyecatcher) as a rapid triage measure for glaucoma clinic waiting areas. The British Journal of Ophthalmology 2021; 105(5):681. https://doi.org/10.1136/BJOPHTHALMOL-2020-316018

8. Pradhan ZS, Sircar T, Agrawal H, et al. Comparison of the Performance of a Novel, Smartphone-based, Head-mounted Perimeter (GearVision) With the Humphrey Field Analyzer. J Glaucoma 2021; 30(4):E146-E152. https://doi.org/10.1097/IJG.0000000000001797

9. Mees L, Upadhyaya S, Kumar P, et al. Validation of a Head-mounted Virtual Reality Visual Field Screening Device. J Glaucoma 2020; 29(2):86-91. https://doi.org/10.1097/IJG.0000000000001415

10. Kimura T, Matsumoto C, Nomoto H. Comparison of head-mounted perimeter (imo®) and Humphrey Field Analyzer. Clinical Ophthalmology (Auckland, NZ) 2019; 13:501. https://doi.org/10.2147/OPTH.S190995

11. Hodapp E a, Parrish RKI, Anderson DR. Clinical Decisions in Glaucoma. St Louis: The CV Mosby Co; 1993.

12. Kumar H, Thulasidas M. Comparison of Perimetric Outcomes from Melbourne Rapid Fields Tablet Perimeter Software and Humphrey Field Analyzer in Glaucoma Patients. Journal of Ophthalmology 2020; 2020. https://doi.org/10.1155/2020/8384509

13. Simakova IL, Tikhonovskaya IA. Evaluation of the effectiveness of frequency doubling technology perimetry in the diagnosis of optic neuropathies. Natsional’nyi zhurnal glaukoma 2022; 21(1):23-35. https://doi.org/10.53432/2078-4104-2022-21-1-23-35

14. Brusini P, Filacorda S. Enhanced Glaucoma Staging System (GSS 2) for classifying functional damage in glaucoma. Journal of Glaucoma 2006; 15(1):40-46. https://doi.org/10.1097/01.ijg.0000195932.48288.97

15. Hollander DA, Volpe NJ, Moster ML, et al. Use of a portable head mounted perimetry system to assess bedside visual fields. The British Journal of Ophthalmology 2000; 84(10):1185. https://doi.org/10.1136/BJO.84.10.1185

16. Erichev VP, Ermolaev AP, Antonov AA, Grigoryan GL, Kosova DV. New visual field testing possibilities (a preliminary report). Vestnik oftal’mologii 2018; 134(2):66-72. https://doi.org/10.17116/oftalma2018134266-72

17. Ermolaev AP, Erichev VP, Antonov AA, et al. Assessing retinal photosensitivity in patients with central vision impairment using a portable perimeter (a preliminary report). Vestnik oftal’mologii 2019; 135(3):46-54. https://doi.org/10.17116/oftalma201913503146

18. Diniz-Filho A, Boer ER, Gracitelli CPB, et al. Evaluation of Postural Control in Glaucoma Patients Using a Virtual 1 Reality Environment. Ophthalmology 2015; 122(6):1131. https://doi.org/10.1016/J.OPHTHA.2015.02.010

19. Ortiz P, Draelos M, Viehland C, et al. Robotically aligned optical coherence tomography with 5 degree of freedom eye tracking for subject motion and gaze compensation. Biomed Opt Express 2021; 12(12):7361. https://doi.org/10.1364/BOE.443537

20. Draelos M, Ortiz P, Qian R, et al. Contactless optical coherence tomography of the eyes of freestanding individuals with a robotic scanner. Nat Biomed Eng 2021; 5(7):726-736. https://doi.org/10.1038/S41551-021-00753-6

21. Draelos M, Ortiz P, Qian R, et al. Automatic optical coherence tomography imaging of stationary and moving eyes with a roboticallyaligned scanner. Proceedings — IEEE International Conference on Robotics and Automation 2019; 2019-May:8897-8903. https://doi.org/10.1109/ICRA.2019.8793524

22. Rakova PA, Dorofeev DA. Macular area’s microdynsmics’ measurements repeatability is normal. Modern technologies in ophtalmology 2020; 3:36-37. https://doi.org/10.25276/2312-4911-2020-3-36-37

23. Kuroyedov A.V., Movsisyan A.B., Egorov E.A., Erichev V.P., Gorodnichy V.V., Brezhnev A.Yu., Gazizova I.R. The profile of patients with primary open-angle glaucoma in the Russian federation (preliminary results of a multicenter population-based study). Part 1. Natsional’nyi zhurnal glaukoma 2021; 20(1):3-15. https://doi.org/10.25700/NJG.2021.01.01

24. Movsisyan AB, Kuroyedov A v., Zavadski PCh, Brezhnev AYu, Abdrakhmanova ES, Gorodnichy V v. Additional professional education of medical doctors and clinical practice results (analytical online study). Natsional’nyi zhurnal glaukoma 2022; 21(1):62-70. https://doi.org/10.53432/2078-4104-2022-21-1-62-70

25. Weinreb RN, Garway-Heath DF, Leung C, Medeiros FA, Liebmann J, eds. Diagnosis of Primary Orep Angle Glaucoma. Amsterdam: Kugler Publications; 2016.

26. Order of a Ministry of Health of Russian Federation 25.02.2022 № 114н. http://publication.pravo.gov.ru/Document/View/0001202204040021

27. Korneeva AV, Kuroyedov AV, Zavadsky PCh et al. Adherence to glaucoma hypotensive therapy: patients' opinions on key factors of low compliance. Analytical multi-central study results. Natsional’nyi zhurnal glaukoma 2020; 19(3):12-21. https://doi.org/10.25700/NJG.2020.03.02

28. Petrov S.Yu., Subbot AM., Gabashvili A.N., Volzhanin A.V., Vitkov A.A. Rat models of glaucomatous optic neuropathy. Natsional’nyi zhurnal glaukoma 2017; 16(4):79-85.

29. Pang I-H, Clark AF. Inducible rodent models of glaucoma. Progress in Retinal and Eye Research 2020; 75:100799. https://doi.org/10.1016/j.preteyeres.2019.100799

30. Almasieh M, Levin LA. Neuroprotection in Glaucoma: Animal Models and Clinical Trials. Annual Review of Vision Science 2017; 3(1):91-120. https://doi.org/10.1146/annurev-vision-102016-061422

31. Harada C, Kimura A, Guo X, Namekata K, Harada T. Recent advances in genetically modified animal models of glaucoma and their roles in drug repositioning. British Journal of Ophthalmology 2019; 103(2):161-166. https://doi.org/10.1136/bjophthalmol-2018-312724

32. Chong RS, Crowston JG, Wong TT. Experimental models of glaucoma filtration surgery. Acta Ophthalmologica 2021; 99(1):9-15. https://doi.org/10.1111/aos.14485

33. Alekseev VN, Egorov EA, Gazizova IR, Zainullina SR. Predicting progressive glaucomatous optic neuropathy using the mathematical method. RMJ Clinical Ophthalmology 2015; 16(4):169-171.

34. Avdeev RV, Aleksandrov AS, Bakunina NA et al. Structural and functional diagnostic criteria in assessing the probability of suspected glaucoma and the early-stage glaucoma. Mediko-biologicheskie problemy zhiznedeyatelnosti 2017; 17(1):105-117.

35. Avdeev RV, Alexandrov AS, Arapiev MU, et al. Suspected glaucoma and early stage glaucoma: differential diagnostic criteria. Russian Ophthalmological Journal 2017; 10(4):5-15. https://doi.org/10.21516/2072-0076-2017-10-4-5-15

36. Avdeev RV, Aleksandrov AS, Bakunina NA et al. A model of primary open-angle glaucoma: manifestations and outcomes. Clinical medicine 2014; 92(12):64-72.

37. Avdeev RV, Aleksandrov AS, Bakunina NA et al. Clinical mathematical model of primary open-abgle glaucoma: manifestation and outcomes. Glaucoma news 2015; 33(1):55-63.

38. Ekgardt VF, Dorofeev DA. The structural-functional and hemodynamic features in patients with simple and pseudoexfoliative openangle glaucoma and ophthalmic hypertension in a model of glaucoma development prognosis. Part 3. Natsional’nyi zhurnal glaukoma 2018; 17(4):3-15. https://doi.org/10.25700/NJG.2018.03.01

39. Kurysheva NI, Koledintsev MN, Denisov AB, Ratmanova EV, Anikina AY. Patent RU2004131064/14A. Method of predicting course of glaucoma optic neuropathy. 2006:6.

40. Dorofeev DA, Antonov AA, Vasilenko DY, et al. A method for measuring intraocular pressure using artificial intelligence technology and fixed-force applanation tonometry. Russian Ophthalmological Journal 2022; 15(2 (Suppl)):49-56.

41. https://doi.org/10.21516/2072-0076-2022-15-2-supplement-49-56

42. Alekseev VN, Egorov EA, Gazizova IR. Patent RU2530588C1. Method of prediction of glaucomatous optic neuropathy progression risk. 2014:10.

43. Agafonova V.V., Frankovska-Gerlak M.Z., Sokolovskaya T.V., Brizhak P.E., Bessarabov A.N. The role of the local and general somatic factors for the open-angle glaucoma development in patients with eye manifestations of pseudoexfoliation syndrome. Ophthalmosurgery 2013; 3:60-65.

44. Likhvantseva VG, Sokolov VA, Levanova ON, Kovelenova I v. Predicting the probability of development and progression of primary open angle glaucoma by regression modeling. Vestnik oftal’mologii 2018; 134(3):35-41. https://doi.org/10.17116/oftalma2018134335

45. Kuroyedov AV, Ostapenko GA, Mitroshina KV, Movsisyan AB. State of the art of glaucoma diagnosis: neural networks and artificial intelligence. Clinical ophthalmology 2019; 19(4):230-237. https://doi.org/10.32364/2311-7729-2019-19-4-230-237

46. Weinreb RN, Friedman DS, Fechtner RD, et al. Risk assessment in the management of patients with ocular hypertension. American Journal of Ophthalmology 2004; 138(3):458-467. https://doi.org/10.1016/j.ajo.2004.04.054

47. Medeiros FA, Weinreb RN, Sample PA, et al. Validation of a predictive model to estimate the risk of conversion from ocular hypertension to glaucoma. Archives of Ophthalmology 2005; 123(10):1351-1360. https://doi.org/10.1001/archopht.123.10.1351

48. Wu Y, Luttrell I, Feng S, et al. Development and validation of a machine learning, smartphone-based tonometer. Br J Ophthalmol 2020; 104(10):1394. https://doi.org/10.1136/BJOPHTHALMOL-2019-315446

49. Spaide T, Wu Y, Yanagihara RT, et al. Using Deep Learning to Automate Goldmann Applanation Tonometry Readings. Ophthalmology. 2020; 127(11):1498-1506. https://doi.org/10.1016/j.ophtha.2020.04.033

50. Dorofeev D.A., Vizgalova L.O., Gorobets A.V., et al. The possibilities of artificial intelligence use in the assessment of Maklakov intraocular pressure prints. Natsional’nyi zhurnal glaukoma. 2020; 19(1):20-27. https://doi.org/10.25700/NJG.2020.01.03

51. Maklakov AN. Again on the ophthalmotonometry. Surgical chronicles 1883; 4:1-11.

52. Balalin SV, Fokin VP, Yuferov OV. Software for detection of the tolerant and target intraocular pressure in patients with primary openangle glaucoma. RMJ Clinical Ophthalmology 2013; 13(4):144-147.

53. Antonov AA, Kozlova IV. Coefficient of biomechanical stress in assessment of the degree of intraocular pressure compensation. Vestnik oftal’mologii 2021; 137(5):255-261. https://doi.org/10.17116/oftalma2021137052255

54. Erichev VP, Antonov AA, Vitkov AA, Grigoryan LA. Static automated perimetry in the diagnosis of glaucoma. part 1: basic principles. Vestnik oftal’mologii 2021;137(5 2):281 288. https://doi.org/10.17116/oftalma2021137052281

55. Erichev VP, Antonov AA, Vitkov AA, Grigoryan LA. Static automated perimetry in the diagnosis of glaucoma. part 2: research protocol, glaucoma classifications, perimetric defects through the prism of structural-functional correlation. Vestnik oftal’mologii 2021; 137(52):289 299. https://doi.org/10.17116/oftalma2021137052289

56. Huang X, Jin K, Zhu J, et al. A Structure-Related Fine-Grained Deep Learning System With Diversity Data for Universal Glaucoma Visual Field Grading. Front Med (Lausanne) 2022; 9. https://doi.org/10.3389/FMED.2022.832920

57. Li F, Wang Z, Qu G, et al. Automatic differentiation of Glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network. BMC Medical Imaging 2018; 18(1). https://doi.org/10.1186/s12880-018-0273-5

58. Asaoka R, Iwase A, Hirasawa K, Murata H, Araie M. Identifying ‘“preperimetric”’ glaucoma in standard automated perimetry visual fields. Investigative Ophthalmology and Visual Science 2014; 55(12):7814- 7820. https://doi.org/10.1167/iovs.14-15120

59. Asaoka R, Murata H, Iwase A, Araie M. Detecting Preperimetric Glaucoma with Standard Automated Perimetry Using a Deep Learning Classifier. Ophthalmology 2016; 123(9):1974-1980. https://doi.org/10.1016/j.ophtha.2016.05.029

60. Kucur ŞS, Holló G, Sznitman R. A deep learning approach to automatic detection of early glaucoma from visual fields. PLoS ONE 2018; 13(11). https://doi.org/10.1371/JOURNAL.PONE.0206081

61. Shuldiner SR, Boland M v., Ramulu PY, et al. Predicting eyes at risk for rapid glaucoma progression based on an initial visual field test using machine learning. PLoS One 2021;16(4). https://doi.org/10.1371/JOURNAL.PONE.0249856

62. Yousefi S, Kiwaki T, Zheng Y, et al. Detection of Longitudinal Visual Field Progression in Glaucoma Using Machine Learning. American Journal of Ophthalmology 2018; 193(9):71-79. https://doi.org/10.1016/j.ajo.2018.06.007

63. Wen JC, Lee CS, Keane PA, et al. Forecasting future Humphrey Visual Fields using deep learning. PLoS ONE 2019; 14(4). https://doi.org/10.1371/JOURNAL.PONE.0214875

64. Jammal AA, Thompson AC, Ogata NG, et al. Detecting Retinal Nerve Fibre Layer Segmentation Errors on Spectral Domain-Optical Coherence Tomography with a Deep Learning Algorithm. Scientific Reports 2019; 9(1). https://doi.org/10.1038/S41598-019-46294-6

65. Maetschke S, Antony B, Ishikawa H, Wollstein G, Schuman J, Garnavi R. A feature agnostic approach for glaucoma detection in OCT volumes. PLoS ONE 2019; 14(7). https://doi.org/10.1371/JOURNAL.PONE.0219126

66. Fu H, Baskaran M, Xu Y, et al. A Deep Learning System for Automated Angle-Closure Detection in Anterior Segment Optical Coherence Tomography Images. American Journal of Ophthalmology 2019; 203:37-45. https://doi.org/10.1016/j.ajo.2019.02.028

67. Niwas SI, Lin W, Bai X, et al. Automated anterior segment OCT image analysis for Angle Closure Glaucoma mechanisms classification. Comput Methods Programs Biomed 2016; 130:65-75. https://doi.org/10.1016/J.CMPB.2016.03.018

68. Fukuda S, Beheregaray S, Kasaragod D, et al. Noninvasive evaluation of phase retardation in blebs after glaucoma surgery using anterior segment polarization-sensitive optical coherence tomography. Investigative Ophthalmology and Visual Science 2014; 55(8):5200-5206. https://doi.org/10.1167/iovs.14-14474

69. Sengupta S, Singh A, Leopold HA, Gulati T, Lakshminarayanan V. Ophthalmic diagnosis using deep learning with fundus images — A critical review. Artif Intell Med 2020; 102. https://doi.org/10.1016/J.ARTMED.2019.101758

70. Li Z, He Y, Keel S, Meng W, Chang RT, He M. Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs. Ophthalmology 2018; 125(8):1199-1206. https://doi.org/10.1016/J.OPHTHA.2018.01.023

71. Christopher M, Belghith A, Bowd C, et al. Performance of Deep Learning Architectures and Transfer Learning for Detecting Glaucomatous Optic Neuropathy in Fundus Photographs. Scientific Reports 2018; 8(1). https://doi.org/10.1038/S41598-018-35044-9

72. Medeiros FA, Jammal AA, Thompson AC. From Machine to Machine: An OCT-trained Deep Learning Algorithm for Objective Quantification of Glaucomatous Damage in Fundus Photographs. Ophthalmology 2019; 126(4):513. https://doi.org/10.1016/J.OPHTHA.2018.12.033

73. Movsisyan AB, Kuroyedov AV, Gorodnichy VV et al. Evaluation of the efficacy of neural network technology in the analysis of the condition of the optic nerve disc and peripapillary retina in healthy individuals examined for glaucoma. Pacific Medical Journal 2020; 81(3):43-47. https://doi.org/10.34215/1609-1175-2020-3-43-47

74. Asaoka R, Murata H, Hirasawa K, et al. Using Deep Learning and Transfer Learning to Accurately Diagnose Early-Onset Glaucoma From Macular Optical Coherence Tomography Images. Vol. 198. Elsevier Inc.; 2019. https://doi.org/10.1016/j.ajo.2018.10.007

75. Ting DSW, Peng L, Varadarajan AV, et al. Deep learning in ophthalmology: The technical and clinical considerations. Prog Retin Eye Res 2019; 72. https://doi.org/10.1016/J.PRETEYERES.2019.04.003

76. Ran AR, Cheung CY, Wang X, et al. Detection of glaucomatous optic neuropathy with spectral-domain optical coherence tomography: a retrospective training and validation deep-learning analysis. Lancet Digit Health 2019; 1(4):e172-e182. https://doi.org/10.1016/S2589-7500(19)30085-8

77. Russakoff DB, Mannil SS, Oakley JD, et al. A 3D Deep Learning System for Detecting Referable Glaucoma Using Full OCT Macular Cube Scans. Translational Vision Science & Technology 2020; 9(2). https://doi.org/10.1167/TVST.9.2.12

78. Christopher M, Bowd C, Belghith A, et al. Deep Learning Approaches Predict Glaucomatous Visual Field Damage from Optical Coherence Tomography Optic Nerve Head Enface Images and Retinal Nerve Fiber Layer Thickness Maps. Ophthalmology 2020; 127(3):346. https://doi.org/10.1016/J.OPHTHA.2019.09.036

79. Park K, Kim J, Lee J. A deep learning approach to predict visual field using optical coherence tomography. PLoS ONE 2020; 15(7). https://doi.org/10.1371/JOURNAL.PONE.0234902

80. Hashimoto Y, Asaoka R, Kiwaki T, et al. Deep learning model to predict visual field in central 10° from optical coherence tomography measurement in glaucoma. British Journal of Ophthalmology 2021; 105(4):507-513. https://doi.org/10.1136/bjophthalmol-2019-315600

81. Musch DC, Gillespie BW, Palmberg PF, Spaeth G, Niziol LM, Lichter PR. Visual field improvement in the collaborative initial glaucoma treatment study. American Journal of Ophthalmology 2014; 158(1). https://doi.org/10.1016/j.ajo.2014.04.003

82. Feiner L, Piltz-Seymour JR. Collaborative Initial Glaucoma Treatment Study: a summary of results to date. Curr Opin Ophthalmol. 2003; 14(2):106-111. https://doi.org/10.1097/00055735-200304000-00010.

83. Musch DC, Gillespie BW, Lichter PR, Niziol LM, Janz NK. Visual Field Progression in the Collaborative Initial Glaucoma Treatment Study. The Impact of Treatment and Other Baseline Factors. Ophthalmology 2009; 116(2):200-207. https://doi.org/10.1016/j.ophtha.2008.08.051

84. Musch DC, Lichter PR, Guire KE, Standardi CL. The Collaborative Initial Glaucoma Treatment Study: study design, methods, and baseline characteristics of enrolled patients. Ophthalmology 1999; 106(4):653-662. https://doi.org/10.1016/s0161-6420(99)90147-1

85. AGIS (Advanced Glaucoma Intervention Study) Investigators. The Advanced Glaucoma Intervention Study: 8. Risk of cataract formation after trabeculectomy. Arch Ophthalmol 2001;119(12):1771-1779. https://doi.org/10.1001/archopht.119.12.1771

86. AGIS (Advanced Glaucoma Intervention Study) Investigators. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol 2000; 130(4):429-440. https://doi.org/10.1016/s0002-9394(00)00538-9

87. Kazemian P, Lavieri MS, van Oyen MP, Andrews C, Stein JD. Persona- lized Prediction of Glaucoma Progression Under Different Target Intraocular Pressure Levels Using Filtered Forecasting Methods. Ophthalmology 2018; 125(4):569. https://doi.org/10.1016/J.OPHTHA.2017.10.033

88. Garcia GGP, Lavieri MS, Andrews C, et al. Accuracy of Kalman Filtering in Forecasting Visual Field and Intraocular Pressure Trajectory in Patients With Ocular Hypertension. JAMA Ophthalmology 2019; 137(12):1416-1423. https://doi.org/10.1001/JAMAOPHTHALMOL.2019.4190

89. Garcia GGP, Nitta K, Lavieri MS, et al. Using Kalman Filtering to Forecast Disease Trajectory for Patients with Normal Tension Glaucoma. Am J Ophthalmol 2019; 199:111. https://doi.org/10.1016/J.AJO.2018.10.012

90. Mariottoni EB, Datta S, Dov D, et al. Artificial Intelligence Mapping of Structure to Function in Glaucoma. Translational Vision Science & Technology. 2020;9(2):1-14. https://doi.org/10.1167/TVST.9.2.19

91. Xiong J, Li F, Song D, et al. Multimodal Machine Learning Using Visual Fields and Peripapillary Circular OCT Scans in Detection of Glaucomatous Optic Neuropathy. Ophthalmology 2022; 129(2):171-180. https://doi.org/10.1016/J.OPHTHA.2021.07.032

92. Antonov AA, Kozlova IV, Vitkov AA. Maximum medical therapy for glaucoma — what is in our arsenal? Natsional’nyi zhurnal glaukoma 2020; 19(2):51-58. https://doi.org/ 10.25700/njg.2020.02.06

93. Lakhani BK, King AJ. Exploring the frequency and location of prescribing errors in the use of topical glaucoma medications. Clinical & Experimental Ophthalmology 2018; 46(6):616-623. https://doi.org/10.1111/CEO.13156

94. Rasool MF, Rehman A ur, Imran I, et al. Risk Factors Associated With Medication Errors Among Patients Suffering From Chronic Disorders. Frontiers in Public Health 2020; 8:531038. https://doi.org/10.3389/FPUBH.2020.531038

95. Pfennigsdorf S, Eschstruth P, Häsemeyer S, et al. Preservative-free bimatoprost 0.03%/timolol 0.5% fixed combination in patients with glaucoma in clinical practice. Clinical Ophthalmology 2016; 10:1837-1846. https://doi.org/10.2147/OPTH.S106159

96. Clinical guidelines – Primary open-angle glaucoma 2020 (02.16.2021) – Approved by the Ministry of Health of the Russian Federation.

97. Kazanova SYu, Kazanov YuA. Digital technologies for the treatment of glaucoma. Natsional’nyi zhurnal glaukoma 2020; 19(4):12-19. https://doi.org/10.25700/NJG.2020.04.02

98. Kozlova IV, Akopyan AI, Reschikova VS. Experience of using the new fixed combination ‘Dorzopt plus’ in treatment of primary open-angle glaucoma. Glaukoma. Zhurnal NII GB RAMN 2012; 2:50-54.

99. Kozlova IV, Akopyan AI, Reschikova VS. Efficacy of combined therapy in patients with primary open-angle glaucoma. Glaukoma. Zhurnal NII GB RAMN 2011; 3:25-29.

100. Erichev VP, Vitkov AA. Topical beta blockers: interaction and undesirable effects (analytical review). XVIII All-Russian Ophthalmology school. 2019; 37-45. https://doi.org/10.30808/978-5-6040782-2019-1-1-37-44


Review

For citations:


Dorofeev D.A., Kazanova S.Yu., Movsisyan A.B., Poleva R.P. Artificial intelligence and neural networks in the diagnosis of glaucoma. National Journal glaucoma. 2023;22(1):115-128. (In Russ.) https://doi.org/10.53432/2078-4104-2023-22-1-115-128

Views: 612


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)