Preview

National Journal glaucoma

Advanced search

The results of using the machine learning method in determining the predictors of hypotensive efficacy of lens extraction in patients with primary angle closure

https://doi.org/10.53432/2078-4104-2024-23-1-3-11

Abstract

PURPOSE. To determine predictors of hypotensive efficacy of lens extraction (LE) with intraocular lens implantation in patients with primary angle closure (PAC) using machine learning.

MATERIAL AND METHODS. A prospective study included 30 patients with PAС, aged 41 to 80 years, who underwent LE. The observation period was 1 month. All subjects underwent Swept Source optical coherence tomography (SS-OCT). The analyzed parameters included 37 parameters such as spherical equivalent (SE), corrected distance visual acuity (CDVA), intraocular pressure (IOP), Shaffer angle opening degree, lens opacity, choroidal thickness in the macula, axis length (AL), anterior chamber depth (ACD), lens vault (LV), iris curvature (ICurv) and thickness (IT750), anterior chamber angle opening distance (AOD), iridotrabecular space area (TISA). As the success of treatment, the value of the decrease in intraocular pressure (DIOP) after the intervention relative to the initial one was taken. Along with standard methods of descriptive statistics, machine learning based on multivariate statistical data analysis were used.

RESULTS. After treatment, IOP decreased from 25.5±2.3 mmHg up to 17.2±1.19 mmHg (p=0.000) against the background of a statistically significant decrease in the number of medicines (from 0.63±0.49 to 0.07±0.25, p=0.001). Predictors of DIOP were: advanced age (B-coefficient=0.235), male gender (B=-0.243), presence of early cataract (B=0.274), low CDVA (B=-0.06), high values of preoperative IOP (B=0.267), SE (B=0.437), LV (B=0.237) and ICurv (B=0.260 in the nasal and 0.232 in the temporal sectors, respectively), as well as low values of IT750 (B=-0.142 and -0.146 in the same sectors, respectively), ACD (B=-0.367), AL (B=-0.487), anterior chamber angle profile parameters.

CONCLUSION. Predictors of the hypotensive effect of LE identified using the machine learning include the advanced age, male gender, high initial IOP, spherical equivalent and lens vault, the presence of early cataract, steep and thin iris, shallow anterior chamber, short axis length and narrow anterior chamber angle.

About the Authors

N. I. Kurysheva
The Department of Eye Diseases at the Medical Biological University of Innovations and Continuing Education of the Federal Biophysical Center named after A.I. Burnazyan; Diagnostic Department of the Ophthalmological Center of Federal Medical‐Biological Agency of Russia
Russian Federation

Kurysheva Natalia Ivanovna; МD, Professor, Head of the Ophthalmology Department; Head of the Consultative and Diagnostic Department

Zhivopisnaya str. 46, building 8, Moscow, 123098;

Gamalei str. 15, Moscow, 123098



A. L. Pomerantsev
Federal Research Center for Chemical Physics RAS
Russian Federation

Pomerantsev Alexey Leonidovich; Dr. Sci. (Phys. and Math)., principal researcher

4, Kosygin Street, Moscow, 119991



O. Y. Rodionova
Federal Research Center for Chemical Physics RAS, 4, Kosygin Street, Moscow, Russian Federation, 119991
Russian Federation

Rodionova Oxana Yevgenievna; Dr. Sci. (Phys. and Math)., principal researcher

4, Kosygin Street, Moscow, 119991



G. A. Sharova
Medical Biological University of Innovations and Continuing Education of the State Research Center — Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency; Ophthalmology Clinic of Dr. Belikova
Russian Federation

Sharova Galina Arkadievna; M.D, Head of the Diagnostic Ophthalmology Department

46-8 Zhivopisnaya St., Moscow, 123098

26/2, Budenny Avenue, Moscow, 105118



References

1. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014; 121(11):2081-2090. https://doi.org/10.1016/j.ophtha.2014.05.013

2. Kurysheva NI, Sharova GA. Primary anterior chamber angle closure: progression from suspect to glaucoma. Part 1. Frequency and rate of transition from suspected primary angle closure to true angle closure and primary angle closure glaucoma. Vestnik Oftalmologii 2022; 138(4):101107. https://doi.org/10.17116/oftalma2022138041101

3. Kurysheva NI, Sharova GA. Primary anterior chamber angle closure: progression from suspect to glaucoma. Part 2. Predictors of primary angle closure. Vestnik Oftalmologii 2022; 138(4):108-116. https://doi.org/10.17116/oftalma2022138041108

4. Jiang Y, Chang DS, Zhu H, et al. Longitudinal changes of angle configuration in primary angle-closure suspects: the Zhongshan Angle-Closure Prevention Trial. Ophthalmology 2014; 121(9):1699-1705. https://doi.org/10.1016/j.ophtha.2014.03.039

5. Azuara-Blanco A., Burr J., Ramsay C., et al. Effectiveness of early lens extraction for the treatment of primary angle-closure glaucoma (EAGLE): a randomised controlled trial. Lancet 2016; 388(10052): 1389-1397. https://doi.org/10.1016/S0140-6736(16)30956-4

6. Song MK, Sung KR, Shin JW, Jo YH, Won HJ. Glaucomatous progression after lens extraction in primary angle closure disease spectrum. J Glaucoma 2020; 29(8):711-717. https://doi.org/10.1097/IJG.0000000000001537

7. Kurysheva N.I., Sharova G.A. The Role of Optical Coherence Tomography in the Diagnosis of Angle Closed Diseases of the Anterior Chamber. Part 1: Visualization of the Anterior Segment of the Eye. Ophthalmology in Russia 2021; 18(2):208-215. https://doi.org/10.18008/1816-5095-2021-2-208-215

8. Kurysheva N.I., Sharova G.А. The Role of Optical Coherence Tomography in the Diagnosis of Angle Closed Diseases of the Anterior Chamber. Part 2: Visualization of the Posterior Segment of the Eye. Ophthalmology in Russia 2021; 18(3):381-388. https://doi.org/10.18008/1816-5095-2021-3-381-388

9. Kurysheva N.I., Sharova G.A. Anatomical and topographical characteristics of the eye in the early stages of primary angle closure disease. National Journal glaucoma 2023; 22(1):42-53. https://doi.org/10.53432/2078-4104-2023-22-1-42-53

10. Kurysheva N.I., Sharova G.A. Predictors of the success of laser peripheral iridotomy and lensectomy in the early stages of primary angle closure disease. Vestnik Oftalmologii 2023; 139(3):98-105. https://doi.org/10.17116/oftalma202313903198

11. Kurysheva N.I., Pomerantsev A.L., Rodionova O.Y., Sharova G.A. Machine Learning Methods in the Comparative Evaluation of Various Approaches to the Surgical Treatment of Primary Angle Closure. Ophthalmology in Russia 2022; 19(3):549-556. https://doi.org/10.18008/1816-5095-2022-3-549-556

12. Wold S., Sjöström M., Eriksson L. PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems 2001; 28:109-130. https://doi.org/10.1016/S0169-7439(01)00155-1

13. Pomerantsev, A. L. Chemometrics in Excel. Hoboken: John Wiley & Sons, Inc. 2014. https://doi.org/10.1002/9781118873212

14. Kucheryavskiy S. mdatools – R package for chemometrics. Chemometrics and Intelligent Laboratory Systems 2020; 198, 103937. https://doi.org/10.1016/j.chemolab.2020.103937

15. Rodionova O.Ye., Pomerantsev A.L. Detection of Outliers in Projection-Based Modeling. Anal Chem 2020; 92:2656-2664. https://doi.org/10.1021/acs.analchem.9b04611

16. Foster PJ, Buhrmann R, Quigley HA, Johnson GJ. The definition and classification of glaucoma in prevalence surveys. Br J Ophthalmol 2002; 86(2):238-242. https://doi.org/10.1136/bjo.86.2.238

17. Chylack LT Jr, Wolfe JK, Singer DM, et al. The Lens Opacities Classification System III. The Longitudinal Study of Cataract Study Group. Arch Ophthalmol 1993; 111(6):831-836. https://doi.org/10.1001/archopht.1993.01090060119035

18. Kurysheva N.I., Boyarinceva M.A., Fomin A.V. Choroidal thickness in primary angle-closure glaucoma: the results of Measurement by Means of Optical Coherence Tomography. Ophthalmology in Russia 2013; 10(4):26-31. https://doi.org/10.18008/1816-5095-2013-4-26-31

19. Melese E, Peterson JR, Feldman RM, et al. Comparing Laser Peripheral Iridotomy to Cataract Extraction in Narrow Angle Eyes Using Anterior Segment Optical Coherence Tomography. PLoS One 2016; 11(9):e0162283. https://doi.org/10.1371/journal.pone.0162283

20. Liu CJ, Cheng CY, Wu CW, Lau LI, Chou JC, Hsu WM. Factors predicting intraocular pressure control after phacoemulsification in angleclosure glaucoma. Arch Ophthalmol 2006; 124(10):1390-1394. https://doi.org/10.1001/archopht.124.10.1390

21. Dada T, Rathi A, Angmo D, et al. Clinical outcomes of clear lens extraction in eyes with primary angle closure. J Cataract Refract Surg 2015; 41(7):1470-1477. https://doi.org/10.1016/j.jcrs.2014.10.029

22. Shams PN, Foster PJ. Clinical outcomes after lens extraction for visually significant cataract in eyes with primary angle closure. J Glaucoma 2012; 21(8):545-550. https://doi.org/10.1097/IJG.0b013e31821db1db1

23. Tarongoy P, Ho CL, Walton DS. Angle-closure glaucoma: the role of the lens in the pathogenesis, prevention, and treatment. Surv Ophthalmol 2009; 54(2):211-225. https://doi.org/10.1016/j.survophthal.2008.12.002

24. Gupta B, Angmo D, Yadav S, Dada T, Gupta V, Sihota R. Quantification of Iridotrabecular Contact in Primary Angle-Closure Disease. J Glaucoma 2020; 29(8):681-688. https://doi.org/10.1097/IJG.0000000000001572

25. Mark HH. Gender differences in glaucoma and ocular hypertension. Arch Ophthalmol 2005; 123(2):284. https://doi.org/10.1001/archopht.123.2.284-a

26. Amerasinghe N, Aung T. Angle-closure: risk factors, diagnosis and treatment. Prog Brain Res 2008; 173:31-45. https://doi.org/10.1016/S0079-6123(08)01104-7

27. Lee CS, Lee ML, Yanagihara RT, Lee AY. Predictors of narrow angle detection rate-a longitudinal study of Massachusetts residents over 1.7 million person years. Eye (Lond) 2021; 35(3):952-958. https://doi.org/10.1038/s41433-020-1003-0

28. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006; 90(3):262-267. https://doi.org/10.1136/bjo.2005.081224

29. Altintaş O, Caglar Y, Yüksel N, Demirci A, Karabaş L. The effects of menopause and hormone replacement therapy on quality and quantity of tear, intraocular pressure and ocular blood flow. Ophthalmologica 2004; 218(2):120-129. https://doi.org/10.1159/000076148

30. Toker E, Yenice O, Akpinar I, Aribal E, Kazokoglu H. The influence of sex hormones on ocular blood flow in women. Acta Ophthalmol Scand 2003; 81(6):617-624. https://doi.org/10.1111/j.1395-3907.2003.00160.x


Supplementary files

Review

For citations:


Kurysheva N.I., Pomerantsev A.L., Rodionova O.Y., Sharova G.A. The results of using the machine learning method in determining the predictors of hypotensive efficacy of lens extraction in patients with primary angle closure. National Journal glaucoma. 2024;23(1):3-11. (In Russ.) https://doi.org/10.53432/2078-4104-2024-23-1-3-11

Views: 324


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)