Preview

National Journal glaucoma

Advanced search

Peripapillary choriocapillaris blood flow in glaucoma. Part 1. Anatomy and pathophysiology of choriocapillaris blood flow and its visualization using OCT angiography

https://doi.org/10.53432/2078-4104-2024-23-3-45-53

Abstract

The pathogenic role of choriocapillaris blood flow in the progression of glaucomatous neurodegeneration has long been discussed in the literature. However, in vivo visualization of the deep microcirculatory structures in the peripapillary zone has remained challenging for a long time.

Modern diagnostic methods, such as optical coherence tomography (OCT), particularly spectral domain OCT (SD-OCT), swept-source OCT (SS-OCT), and OCT angiography, now enable the visualization of deep ocular vessels, including the choriocapillaris layer, opening new possibilities for diagnosing and monitoring the progression of glaucoma. This review provides information on the anatomy of the choroid, the choriocapillaris layer, its role in the pathogenesis of glaucoma, as well as the latest methods of studying these structures using optical coherence tomography.

About the Authors

N. I. Kurysheva
Medical Biological University of Innovations and Continuing Education, Burnazyan Federal Biophysical Center ; Ophthalmological Center, Burnazyan Federal Biophysical Center, Federal Medical and Biological Agency
Russian Federation

Dr. Sci. (Med.), Professor, Head of the Academic Department of Ophthalmology, Head of the Consultative and Diagnostic Department

46-8 Zhivopisnaya St., Moscow, 123098

15 Gamalei St., Moscow, 123098



V. Yu. Kim
Ophthalmological Center, Burnazyan Federal Biophysical Center, Federal Medical and Biological Agency ; Medical Biological University of Innovations and Continuing Education, Burnazyan Federal Biophysical Center
Russian Federation

Ophthalmologist at the Consultative and Diagnostic Department, Assistant Professor at the Academic Department of Ophthalmology

15 Gamalei St., Moscow, 123098

46-8 Zhivopisnaya St., Moscow, 123098



V. E. Kim
Ophthalmological Center, Burnazyan Federal Biophysical Center, Federal Medical and Biological Agency ; Medical Biological University of Innovations and Continuing Education, Burnazyan Federal Biophysical Center
Russian Federation

Ophthalmologist at the Consultative and Diagnostic Department, Assistant Professor at the Academic Department of Ophthalmology

15 Gamalei St., Moscow, 123098

46-8 Zhivopisnaya St., Moscow, 123098



References

1. Allison K, Patel D, Alabi O. Epidemiology of Glaucoma: The Past, Present, and Predictions for the Future. Cureus 2020; 12(11):e11686. https://doi.org/10.7759/cureus.11686

2. Moghimi S, Hou H, Rao H, Weinreb RN. Optical coherence tomography angiography and glaucoma: a brief review [published online ahead of print April 4, 2019]. Asia Pac J Ophthalmol (Phila). https://doi.org/10.22608/APO.201914

3. Downs JC, Roberts MD, Burgoyne CF. Mechanical environment of the optic nerve head in glaucoma. Optometry and vision science: official publication of the American Academy of Optometry 2008; 85(6):425-435. https://doi.org/10.1097/OPX.0b013e31817841cb

4. Strickland RG, Garner MA, Gross AK, Girkin CA. Remodeling of the Lamina Cribrosa: Mechanisms and Potential Therapeutic Approaches for Glaucoma. Int J Mol Sci 2022; 23(15):8068. https://doi.org/10.3390/ijms23158068

5. Borrelli E, Shi Y, Uji A, et al. Topographic Analysis of the Choriocapillaris in Intermediate Age-related Macular Degeneration. Am J Ophthalmol 2018; 196:34-43. https://doi.org/10.1016/j.ajo.2018.08.014

6. Lee EJ, Lee KM, Lee SH, Kim TW. Parapapillary Choroidal Microvasculature Dropout in Glaucoma: A Comparison between Optical Coherence Tomography Angiography and Indocyanine Green Angiography. Ophthalmology 2017; 124(8):1209-1217. https://doi.org/10.1016/j.ophtha.2017.03.039

7. Lee EJ, Kim TW, Kim JA, Kim JA. Central Visual Field Damage and Parapapillary Choroidal Microvasculature Dropout in Primary OpenAngle Glaucoma. Ophthalmology 2018; 125(4):588-596. https://doi.org/10.1016/j.ophtha.2017.10.036

8. Park HL, Kim JW, Park CK. Choroidal microvasculature dropout is associated with progressive retinal nerve fiber layer thinning in glaucoma with disc hemorrhage. Ophthalmology 2018; 125(7):1003-1013. https://doi.org/10.1016/j.ophtha.2018.01.016

9. Alm A, Bill A. Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Exp Eye Res 1973; 15(1):15-29. https://doi.org/10.1016/0014-4835(73)90185-1

10. Lejoyeux R, Benillouche J, Ong J, et al. Choriocapillaris: Fundamentals and advancements. Prog Retin Eye Res 2022; 87:100997. https://doi.org/10.1016/j.preteyeres.2021.100997

11. Anderson DR. What happens to the optic disc and retina in glaucoma? Ophthalmology 1983; 90(7):766-770. https://doi.org/10.1016/s0161-6420(83)34490-0

12. Anand-Apte B, Hollyfield JG. Developmental anatomy of the retinal and choroidal vasculature. In: Besharse J, Bok D, editors. Encyclopedia of the Eye. London, Academic Press, Elsevier Books, 2009. Pp. 9-15.

13. Roy S, Kern TS, Song B, Stuebe C. Mechanistic Insights into Pathological Changes in the Diabetic Retina: Implications for Targeting Diabetic Retinopathy. Am J Pathol 2017; 187(1):9-19. https://doi.org/10.1016/j.ajpath.2016.08.022

14. Jonas JB, Nguyen XN, Gusek GC, Naumann GO. Parapapillary chorioretinal atrophy in normal and glaucoma eyes. I. Morphometric data. Invest Ophthalmol Vis Sci 1989; 30(5):908-918.

15. Jonas JB. Clinical implications of peripapillary atrophy in glaucoma. Curr Opin Ophthalmol 2005; 16:84-88. https://doi.org/10.1097/01.icu.0000156135.20570.30

16. Manalastas P, Belghith A, Weinreb RN, Jonas JB, Suh MH, Yarmohammadi A, et al. Automated beta zone parapapillary area measurement to differentiate between healthy and glaucoma eyes. Am J Ophthalmol 2018; 191:140-148. https://doi.org/10.1016/j.ajo.2018.04.021

17. Teng CC, De Moraes CG, Prata TS, Liebmann CA, Tello C, Ritch R, et al. The region of largest beta-zone parapapillary atrophy area predicts the location of most rapid visual field progression. Ophthalmology 2011; 118:2409-2413. https://doi.org/10.1016/j.ophtha.2011.06.014

18. Araie M, Sekine M, Suzuki Y, Koseki N. Factors contributing to the progression of visual field damage in eyes with normal-tension glaucoma. Ophthalmology 1994; 101:1440-1444. https://doi.org/10.1016/S0161-6420(94)31153-5

19. Jonas JB, Jonas SB, Jonas RA, Holbach L, Dai Y, Sun X, et al. Parapapillary atrophy: histological gamma zone and delta zone. Plos One 2012; 7:e47237. https://doi.org/10.1371/journal.pone.0047237

20. Dai Y, Jonas JB, Huang H, Wang M, Sun X. Microstructure of parapapillary atrophy: beta zone and gamma zone. Invest Ophthalmol Vis Sci 2013; 54:2013-2018. https://doi.org/10.1167/iovs.12-11255

21. Kim YW, Lee EJ, Kim TW, Kim M, Kim H. Microstructure of beta-zone parapapillary atrophy and rate of retinal nerve fiber layer thinning in primary open-angle glaucoma. Ophthalmology 2014; 121:1341-1349. https://doi.org/10.1016/j.ophtha.2014.01.008

22. Yamada H, Akagi T, Nakanishi H, Ikeda HO, Kimura Y, Suda K, et al. Microstructure of peripapillary atrophy and subsequent visual field progression in treated primary open-angle glaucoma. Ophthalmology 2016; 123:542-551. https://doi.org/10.1016/j.ophtha.2015.10.061

23. Yoo YJ, Lee EJ, Kim TW. Intereye difference in the microstructure of parapapillary atrophy in unilateral primary open-angle glaucoma. Invest Ophthalmol Vis Sci 2016; 57:4187-4193. https://doi.org/10.1167/iovs.16-19059

24. Shang K, Hu X, Dai Y. Morphological features of parapapillary beta zone and gamma zone in chronic primary angle-closure glaucoma. Eye 2019; 33:1378-1386. https://doi.org/10.1038/s41433-019-0541-9

25. Kim M, Kim TW, Weinreb RN, Lee EJ. Differentiation of parapapillary atrophy using spectral-domain optical coherence tomography. Ophthalmology 2013; 120:1790-1797. https://doi.org/10.1016/j.ophtha.2013.02.011

26. Jonas JB, Wang YX, Zhang Q, Fan YY, Xu L, Wei WB, et al. Parapapillary gamma zone and axial elongation-associated optic disc rotation: the Beijing Eye Study. Invest Ophthalmol Vis Sci 2016; 57:396-402. https://doi.org/10.1167/iovs.15-18263

27. Zhang Q, Wang YX, Wei WB, Xu L, Jonas JB. Parapapillary Beta Zone and Gamma Zone in a Healthy Population: The Beijing Eye Study 2011. Invest Ophthalmol Vis Sci. 2018; 59(8):3320-3329. https://doi.org/10.1167/iovs.18-24141

28. O'Brart DP, de Souza Lima M, Bartsch DU, Freeman W, Weinreb RN. Indocyanine green angiography of the peripapillary region in glaucomatous eyes by confocal scanning laser ophthalmoscopy. Am J Ophthalmol 1997; 123(5):657-666. https://doi.org/10.1016/s0002-9394(14)71078-5

29. Spraul CW, Lang GE, Lang GK, Grossniklaus HE. Morphometric changes of the choriocapillaris and the choroidal vasculature in eyes with advanced glaucomatous changes. Vision Res 2002; 42(7):923-932. https://doi.org/10.1016/s0042-6989(02)00022-6

30. Lee SH, Kim T-W, Lee EJ, et al. Focal lamina cribrosa defects are not associated with steep lamina cribrosa curvature but with choroidal microvascular dropout. Sci Rep 2020; 10:6761. https://doi.org/10.1038/s41598-020-63681-6

31. Nicolela MT. Clinical clues of vascular dysregulation and its association with glaucoma. Can J Ophthalmol 2008; 43(3):337-341. https://doi.org/10.3129/i08-063

32. Boltz A, Schmidl D, Weigert G, et al. Effect of latanoprost on choroidal blood flow regulation in healthy subjects. Invest Ophthalmol Vis Sci 2011; 52(7):4410-4415. https://doi.org/10.1167/iovs.11-7263

33. Schmidl D, Weigert G, Dorner GT, et al. Role of adenosine in the control of choroidal blood flow during changes in ocular perfusion pressure. Invest Ophthalmol Vis Sci 2011; 52(8):6035-6039. https://doi.org/10.1167/iovs.11-7491

34. Flügel C, Tamm ER, Mayer B, Lütjen-Drecoll E. Species differences in choroidal vasodilative innervation: evidence for specific intrinsic nitrergic and VIP-positive neurons in the human eye. Invest Ophthalmol Vis Sci 1994; 35(2):592-599.

35. Kurysheva N.I., Tcaregorodceva M.A., Irtegova E.U., Riabova T.A., Shlapak V.N. Ocular perfusion pressure and primary vascular dysregulation in patients with normal tension glaucoma. Glaukoma. Zhurnal NII Glaznyh Bolezney RAMN 2011; 3:11-17.

36. Kurisheva N.I. Glaznaya gemoperfuziya i glaukoma [Eye hemoperfusion and glaucoma]. Moscow, Greenlight Publ., 2014. 128 p.

37. Kurysheva NI. The role of retinal microcirculation disorders in the progression of glaucomatous optic neuropathy. Vestnik Oftalmologii 2020; 136(4):57-65. https://doi.org/10.17116/oftalma202013604157

38. Krzyżanowska-Berkowska P, Czajor K, Iskander DR. Associating the biomarkers of ocular blood flow with lamina cribrosa parameters in normotensive glaucoma suspects. Comparison to glaucoma patients and healthy controls. PLoS One 2021; 16(3):e0248851. https://doi.org/10.1371/journal.pone.0248851

39. Kwon JM, Weinreb RN, Zangwill LM, Suh MH. Juxtapapillary DeepLayer Microvasculature Dropout and Retinal Nerve Fiber Layer Thinning in Glaucoma. Am J Ophthalmol 2021; 227:154-165. https://doi.org/10.1016/j.ajo.2021.02.014

40. Suh MH, Zangwill LM, Manalastas PIC, et al. Deep-Layer Microvasculature Dropout by Optical Coherence Tomography Angiography and Microstructure of Parapapillary Atrophy. Invest Ophthalmol Vis Sci 2018; 59(5):1995-2004. https://doi.org/10.1167/iovs.17-23046

41. Suh MH, Na JH, Zangwill LM, Weinreb RN. Deep-layer Microvasculature Dropout in Preperimetric Glaucoma Patients. J Glaucoma 2020; 29(6):423-428. https://doi.org/10.1097/IJG.0000000000001489

42. Rao HL, Pradhan ZS, Suh MH, Moghimi S, Mansouri K, Weinreb RN. Optical Coherence Tomography Angiography in Glaucoma. J Glaucoma 2020; 29(4):312-321. https://doi.org/10.1097/IJG.0000000000001463

43. Liu L, Jia Y, Takusagawa HL, et al. Optical Coherence Tomography Angiography of the Peripapillary Retina in Glaucoma. JAMA Ophthalmol 2015; 133(9):1045-1052. https://doi.org/10.1001/jamaophthalmol.2015.2225

44. Wang Y, Fawzi AA, Varma R, et al. Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases. Invest Ophthalmol Vis Sci 2011; 52(2):840-845. https://doi.org/10.1167/iovs.10-5985

45. Kurysheva NI, Maslova EV. Optical coherence tomography angiography in glaucoma diagnosis. Vestnik Oftalmologii 2016; 132(5): 98-102. https://doi.org/10.17116/oftalma2016132598-102

46. Kurysheva NI, Shatalova EO. Parafoveal vessel density dropout may predict glaucoma progression in the long-term follow up. Journal of Ophthalmology and Research 2022; 5:150-166.

47. Jia Y, Morrison JC, Tokayer J, et al. Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express 2012; 3(12): 3127-3137. https://doi.org/10.1364/BOE.3.003127

48. Moghimi S, Bowd C, Zangwill LM, et al. Measurement Floors and Dynamic Ranges of OCT and OCT Angiography in Glaucoma. Ophthalmology 2019; 126(7):980-988. https://doi.org/10.1016/j.ophtha.2019.03.003

49. Van Melkebeke L, Barbosa-Breda J, Huygens M, Stalmans I. Optical Coherence Tomography Angiography in Glaucoma: A Review. Ophthalmic Res 2018; 60(3):139-151. https://doi.org/10.1159/000488495

50. WuDunn D, Takusagawa HL, Sit AJ, et al. OCT Angiography for the Diagnosis of Glaucoma: A Report by the American Academy of Ophthalmology. Ophthalmology 2021; 128(8):1222-1235. https://doi.org/10.1016/j.ophtha.2020.12.027


Review

For citations:


Kurysheva N.I., Kim V.Yu., Kim V.E. Peripapillary choriocapillaris blood flow in glaucoma. Part 1. Anatomy and pathophysiology of choriocapillaris blood flow and its visualization using OCT angiography. National Journal glaucoma. 2024;23(3):45-53. (In Russ.) https://doi.org/10.53432/2078-4104-2024-23-3-45-53

Views: 184


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)