Causes of cataract progression in glaucoma patients (report 2)
https://doi.org/10.53432/2078-4104-2025-24-1-58-64
Abstract
Hypotensive drops that penetrate into the aqueous humor of the anterior chamber cause thinning, roughness, irregularities, and microcracks in the anterior lens capsule, followed by the formation of microfibrils and pseudomembranes. In a five-year follow-up of 2532 glaucoma patients, nuclear cataract progression due to prolonged use of hypotensive eye drops was identified in 592 cases (23.4%).
Patients with glaucoma exhibit a lower oxygen consumption rate by the lens (2.27 femtomoles/min/cell vs. a normal value of 2.83 femtomoles/min/cell), reduced oxygen utilization for adenosine triphosphate (ATP) production (0.72 femtomoles/min/cell vs. a normal value of 0.932 femtomoles/min/cell), and decreased maximal respiratory capacity of lens cells (4.17 vs. 5.46 femtomoles/min/cell). These changes represent risk factors for cataract development.
In uveal glaucoma, blood proteins and inflammatory cells accumulate in the aqueous humor, posterior synechiae form between the iris and the anterior lens capsule, and fibrinous exudate develops in the pupillary area. Patients with uveal glaucoma receive anti-inflammatory and hypotensive pharmacotherapy, as well as laser and surgical treatments, including drainage device implantation. These factors contribute to a 34% increase in the incidence and progression of cataracts in uveal glaucoma patients.
About the Author
E. A. IvachevRussian Federation
Cand. Sci. (Med), Associate Professor, Head of Ophthalmology Department
40 Krasnaya St, Penza, 440026
118 Uritskogo St., Penza, 440600
References
1. Kubota M., Shui Y.B., Liu M., Bai F., Huang A.J., Ma N., Beebe D.C., Siegfried C.J. Mitochondrial oxygen metabolism in primary human lens epithelial cells: Association with age, diabetes and glaucoma. Free Radical Biology and Medicine 2016; 97:513-519. https://doi.org/10.1016/j.freeradbiomed.2016.07.016
2. Kurysheva N.I., Fedorov A.A., Erichev V.P. Pathomorphological features of the anterior and posterior capsules of the cataract lens in patients with primary glaucoma. Russian Annals of Ophthalmology = Vestnik oftal’mologii 2000; 116(2):13-16.
3. Lumpova T.N.. Usage of Oftan Catahrom eye drops in treatment of glaucoma. RMJ Clinical Ophthalmology 2007; 4:167-168.
4. Kurmangalieva M.M. Surgical treatment of glaucoma in combination with cataract in combination with cataract. RMJ. Clinical Ophthalmology 2004; 2:66-68.
5. Chang E.L., Emmel D.K., Teng C.C., Sarrafpour S., Liu J. Anterior Subcapsular Cataract Formation With Long-term Topical Netarsudil Treatment for Glaucoma. J Glaucoma 2022; 1;31(1):60-63. https://doi.org/10.1097/IJG.0000000000001956.
6. Ren R., Li G., Le T.D., Kopczynski C., Stamer W.D., Gong H. Netarsudil increases outflow facility in human eyes throughmultiple mechanisms. Invest Ophthalmol Vis Sci 2016; 57(14):6197-6209. https://doi.org/10.1167/iovs.16-20189
7. Wang R.F., Williamson J.E., Kopczynski C., Serle J.B. Effect of 0.04% AR-13324, a ROCK, and norepinephrine transporterinhibitor, on aqueous humor dynamics in normotensive mon-key eyes. J Glaucoma 2015; 24(1):51-54. https://doi.org/10.1097/IJG.0b013e3182952213
8. Kazemi A., McLaren J.W., Kopczynski C.C., Heah T.G., Novack G.D., Sit A.J. The effects of netarsudil ophthalmic so-lution on aqueous humor dynamics in a randomized study inhumans. J Ocul Pharmacol Ther 2018; 34(5):380-386. https://doi.org/10.1089/jop.2017.0138
9. Kiel J.W., Kopczynski C.C. Effect of AR-13324 on episcleralvenous pressure in Dutch belted rabbits. J Ocul Pharmacol Ther. 2015; 31(3):146-151. https://doi.org/10.1089/jop.2014.0146
10. Asrani S., Robin A.L., Serle J.B. et al. Netarsudil/latanoprost fixed-dose combination for elevated intraocular pressure: three-month data from a randomized phase 3 trial. Am J Ophthalmol 2019; 207:248-257. https://doi.org/10.1016/j.ajo.2019.06.016
11. Chandrasekaran S., Cumming R.G., Rochtchina E., Mitchell P. Associations between elevated intraocular pressure and glaucoma, use of glaucoma medications, and 5-year incident cataract: the Blue Mountains Eye Study. Ophthalmology 2006; 113(3):417-424. https://doi.org/10.1016/j.ophtha.2005.10.050
12. Leske M.C., Wu S.Y., Nemesure B., Hennis A. Barbados Eye Studies Group. Risk factors for incident nuclear opacities. Ophthalmology 2002; 109:1303-1308. https://doi.org/10.1016/s0161-6420(02)01094-1
13. Markova A.A., Gorbunova N.Y., Pozdeyeva N.A. Angle-closure glaucoma with plateau iris. National Journal glaucoma 2018; 17(4):80-90. https://doi.org/10.25700/NJG.2018.04.07
14. Holekamp N.M., Shui Y.B., Beebe D.C. Vitrectomy surgery increases oxygen exposure to the lens: a possible mechanism for nuclear cataract formation. Am J Ophthalmol 2005; 139(2):302-310. https://doi.org/10.1016/j.ajo.2004.09.046
15. Shui Y.B., Fu J.J., Garcia C. et al. Oxygen distribution in the rabbit eye and oxygen consumption by the lens. Invest Ophthalmol Vis Sci 2006; 47(4):1571-1580. https://doi.org/10.1167/iovs.05-1475
16. Siegfried C.J., Shui Y.B., Holekamp N.M., et al. Oxygen distribution in the human eye: relevance to the etiology of open-angle glaucoma after vitrectomy. Invest Ophthalmol Vis Sci 2010; 51(11):5731-5738. https://doi.org/10.1167/iovs.10-5666
17. Bantseev V.L., Herbert K.L., Trevithick J.R., Sivak J.G. Mitochondria of rat lenses: distribution near and at the sutures. Curr Eye Res 1999; 19(6):506-516. https://doi.org/10.1076/ceyr.19.6.506.5279
18. Huang L., Yappert M.C., Jumblatt M.M., Borchman D. Hyperoxia and thyroxine treatment and the relationships between reactive oxygen species generation, mitochondrial membrane potential, and cardiolipin in human lens epithelial cell cultures. Curr Eye Res 2008; 33(7):575-586. https://doi.org/10.1080/02713680802167554
19. Beebe D.C. Maintaining transparency: a review of the developmental physiology and pathophysiology of two avascular tissues. Semin Cell Dev Biol 2008; 19(2):125-133. https://doi.org/10.1016/j.semcdb.2007.08.014
20. Egorova E.V., Tukhtayev K.R.,Agafonova V.V., Fayziyeva U.S. Morphologic and ultra-structural features of anterior lens capsule in case of primary angle-closure glaucoma associated with pseudoexfoliation syndrome. Ophthalmosurgery 2012; 1:69-72.
21. Peracha-Riyaz M.H., Zuhair H., Spaulding J., Baciu P., Shareef A., Imami N.R., Darnley-Fisch D., Desa U. First described case of anterior and posterior segment crystals in phacolytic glaucoma. Journal of Glaucoma 2017; 26(5):171-173. https://doi.org/10.1097/IJG.0000000000000642
22. Venkatesh R., Tan C.S.H., Kumar T.T., Ravindran R.D. Safety and efficacy of manual small incision cataract surgery for phacolytic glaucoma. Br J Ophthalmol 2007; 91(3):279-281. https://doi.org/10.1136/bjo.2006.105874
23. Epstein D.L., Jedziniak J.A., Grant W.M. Identification of heavy molecular-weight soluble protein in aqueous humor in human phacolytic glaucoma. Invest Ophthalmol Vis Sci 1978; 17:398-402.
24. Mavrakanas N., Axmann S., Issum C.V., Schutz J.S., Shaarawy T. Phacolytic glaucoma: are there 2 forms? J Glaucoma 2012; 21:248-249. https://doi.org/10.1097/IJG.0b013e31820d7d2e
25. Yoo W.S., Kim B.J., Chung I.Y., Seo S.W., Yoo J.M., Kim S.J. A case of phacolytic glaucoma with anterior lens capsule disruption identified by scanning electron microscopy. BMC Ophthalmol 2014; 14:133. https://doi.org/10.1186/1471-2415-14-133
26. Plekhanov A.N., Fomina A.S., Sverkunova O.P., Ivanova J.V. Autoimmune uveitis. Review. Ophthalmology in Russia 2019; 16(1):5-11. https://doi.org/10.18008/1816-5095-2019-1-5-11
27. Uchtinova E.I. Uveal (inflammatory and post-inflammatory) glaucoma (pathogenesis, clinical picture, classification, treatment). Oftalmologičeskie vedomosti 2009; 2(2):81-91.
28. Sijssens K.M, Rothova A., Berendschot T.J.T.M., et al. Ocular hypertension and secondary Glaucoma in children with uveitis. Ophthalmology 2006; 113:853-859. https://doi.org/10.1016/j.ophtha.2006.01.043
29. Neroev V.V., Sorozhkina E.S., Krichevskaya G.I., Balatskaya N.V., Davydova G.A., Lisitsyna T.A. Clinical features of Behcet’s uveitis in patients with herpesvirus reactivation. Russian Ophthalmological Journal 2022; 15(4):58-65. https://doi.org/10.21516/2072-0076-2022-15-4-58-65
30. Hanashiro R., Fujino K., Gugunfu Y., et al. Synthetic lipid A-induced uveitis and endotoxin-induced uveitis — comparative study. Jpn. J. Ophthalmol 1997; 41(6):355-361. https://doi.org/10.1016/S0021-5155(97)00079-8
31. Belousova N. Yu. Modern approaches to the therapy of uveal ocular hypertension. Russian Annals of Ophthalmology = Vestnik oftal’mologii 2014; 5:74-77.
32. Kushnir V.N., Dumbrevyanu L.G., Groppa L.G. Clinical therapeutic characteristics of secondary glaucoma in uveitis associated with reactive arthritis and ankylosing spondylitis. RMJ Clinical Ophthalmology 2012; 3:95-97.
33. Medvedev I.B., Samodurova E.V., Svetlichnaya S.V., Batalina L.V., Dergacheva N.N. Review of the effectiveness of modern treatment of non-infectious uveitis. Ophthalmology in Russia 2023; 20(2):208-214. https://doi.org/10.18008/1816-5095-2023-2-208-214
34. Razumova I.Yu, Godzenko A.A. Behçet’s disease and uveitis. Russian Annals of Ophthalmology = Vestnik oftal’mologii 2021; 137(5):130-137. https://doi.org/10.17116/oftalma2021137051130
35. Salikhov I.G., Lapshina S.A., Kirillova E.R. Treatment of rheumatoid arthritis. Practical medicine 2008; 8(32):3-7.
36. Hunter R.S., Lobo A.M. Dexamethasone intravitreal implant for the treatment of noninfectious uveitis. Clinical Ophthalmology 2011; 5:1613-1621. https://doi.org/10.2147/OPTH.S17419
37. Kiernan D., Mieler W. The use of intraocular corticosteroids. Expert Opinion on Pharmacotherapy 2009; 10(15):2511-2525. https://doi.org/10.1517/14656560903160671
38. Ivanova E.V., Khoroshikh Y.I. Complicated cataract in patients with peripheral uveitis: surgical treatment. Ophthalmosurgery 2018; 4:6-10. https://doi.org/10.25276/0235-4160-2018-4-6-10
39. Krakhmaleva D.A., Pivin E.A., Trufanov S.V., Malozhen S.A. Modern opportunities in uveitis treatment. Ophthalmology in Russia. 2017; 14(2):113-119. https://doi.org/10.18008/1816-5095-2017-2-113-119
40. Drozdova E.A. Immunosuppressive therapy in non-infections uveitis and retinovasculitis. Ophthalmology in Russia 2012; 9(2):58-61. https://doi.org/10.18008/1816-5095-2012-2-58-61
41. Panova I.E., Boiko E.V., Khizhnyak I.V., Samkovich E.V. Medication support and features of uveal cataract surgery. Ophthalmosurgery 2018; 4:31-39. https://doi.org/10.25276/0235-4160-2018-4-31-39
42. Tereshchenko A.V., Trifanenkova I.G., Tereshchenkova M.S., Erokhina E.V., Yudina N.N. Differentiated Approach to the Surgical Treatment of Chronic Uveitis in Juvenile Idiopathic Arthritis. Ophthalmology in Russia 2018;15(2S):89-97. https://doi.org/10.18008/1816-5095-2018-2S-89-97
43. Onishchenko A.L., Kolbasko A.V., Tchernyshev A.D. Therapy of fibrinous plastic anterior uveitis. Ophthalmology in Russia 2015; 12(2): 54-58. https://doi.org/10.18008/1816-5095-2015-2-54-58
44. Erichev V.P. Prostaglandins in ophthalmology. Russian Annals of Ophthalmology = Vestnik oftal’mologii 2022; 138(1):107-114. https://doi.org/10.17116/oftalma2022138011107
45. Arestova N.N., Katargina L.A., Denisova E.V., Kruglova T.B., Egiyan N.S. Laser Iridotomy for Pupillary Block in Children with Endogenous Uveitis. Ophthalmology in Russia 2023; 20(1):69-75. https://doi.org/10.18008/1816-5095-2023-1-69-75
46. Kolenko OV, Postupaeva NV, Postupaev AV, Sorokin EL. Efficacy of micropulse cyclophotocoagulation in acute angle-closure glaucoma. Oftalmologičeskie vedomosti 2023; 16(2):29-38. https://doi.org/10.17816/OV258607
47. Kotaniemi K., Sihto-Kauppi K. Occurrence and management of ocular hypertension and secondary glaucoma in juvenile idiopathic arthritis-associated uveitis: An observational series of 104 patients. Clin Ophthalmol 2007; 1(4):455-9.
48. Katargina L.A., Denisova E.V., Ibaid B.N., Arestova N.N. The efficacy of composite drainage implantation in childhood uveitic glaucoma. National Journal glaucoma 2018; 17(3):34-39. https://doi.org/10.25700/NJG.2018.03.04
49. Katargina L.A., Denisova E.V., Bahaaeddin I., Khrabrova M.A. Ahmed valve implantation results in children with uveitic glaucoma. Russian Ophthalmological Journal 2021; 14(1):30-34. https://doi.org/10.21516/2072-0076-2021-14-1-30-34
50. Denisova E.V., Ibaid B.N., Kogoleva L.V. Factors of Excessive Proliferation after Trabeculectomy in Pediatric Uveitic Glaucoma. Ophthalmology in Russia 2021; 18(2):284-289. https://doi.org/10.18008/1816-5095-2021-2-284-289
51. Adelman R. A., Brauner S.C., Afshari N.A., Grosskreutz C.L. Cataract formation after initial trabeculectomy in young patients. Ophthalmology 2003; 110(3):625-629. https://doi.org/10.1016/S0161-6420(02)01769-4
Review
For citations:
Ivachev E.A. Causes of cataract progression in glaucoma patients (report 2). National Journal glaucoma. 2025;24(1):58-64. (In Russ.) https://doi.org/10.53432/2078-4104-2025-24-1-58-64