Preview

National Journal glaucoma

Advanced search

Excessive scarring in glaucoma surgery. Part 1: Current concepts of wound healing in glaucoma surgery

https://doi.org/10.53432/2078-4104-2025-24-2-84-92

Abstract

The main complication of glaucoma surgery is cicatricial changes in newly formed outflow tracts. This process leads to a repeated increase in intraocular pressure (IOP) and is the reason for a decrease in the effectiveness of glaucoma surgeries. In the cascade of successive stages of surgical wound healing, the inflammation phase is considered the most important. Reducing its severity and duration is the main goal of postoperative therapy, since excessive inflammation leads to the formation of scar tissues. In turn, its excessive suppression leads to the development of "ineffective resolution". In this case, the inflammation becomes chronic, and the next healing phase does not occur. For complete restoration of the damaged tissue architecture, the healing process must consistently go through all phases. The use of pro-resolving mediators can contribute to the correct completion of inflammation.

This review explores the physiological processes of restoration of the damaged tissue architecture, as well as the causes of cicatricial changes in the newly formed intraocular fluid outflow tracts.

About the Authors

Yu. N. Yusef
Krasnov Research Institute of Eye Diseases
Russian Federation

Dr. Sci. (Med.), Director

11A Rossolimo St., Moscow, 1190214



А. А. Antonov
Krasnov Research Institute of Eye Diseases
Russian Federation

Dr. Sci. (Med.), Head of the Department of Glaucoma

11A Rossolimo St., Moscow, 1190214



А. М. Subbot
Krasnov Research Institute of Eye Diseases
Russian Federation

Cand. Sci. (Med.), senior researcher, acting Head of the Laboratory of Fundamental Research in Ophthalmology

11A Rossolimo St., Moscow, 1190214



I. I. Vitkova
Krasnov Research Institute of Eye Diseases
Russian Federation

postgraduate student

11A Rossolimo St., Moscow, 1190214



E. V. Emets
Krasnov Research Institute of Eye Diseases
Russian Federation

junior researcher at the Laboratory of Fundamental Research in Ophthalmology

11A Rossolimo St., Moscow, 1190214



A. A. Vitkov
Krasnov Research Institute of Eye Diseases
Russian Federation

 junior researcher at the Department of Glaucoma

11A Rossolimo St., Moscow, 1190214



E. D. Semenov
Krasnov Research Institute of Eye Diseases
Russian Federation

postgraduate student

11A Rossolimo St., Moscow, 1190214



References

1. Antonov A.A., Karlova E.V., Brezhnev A.Yu., Dorofeev D.A. Current state of ophthalmic tonometry. Russian Annals of Ophthalmology 2020; 136(6):100-107. https://doi.org/10.17116/oftalma2020136061100

2. Le A, Mukesh BN, McCarty CA, Taylor HR. Risk factors associated with the incidence of open-angle glaucoma: the visual impairment project. Invest Ophthalmol Vis Sci 2003; 44(9):3783-3789. https://doi.org/10.1167/iovs.03-0077

3. Czudowska MA, Ramdas WD, Wolfs RC, Hofman A, De Jong PT, Vingerling JR, Jansonius NM. Incidence of glaucomatous visual field loss: a ten-year follow-up from the Rotterdam Study. Ophthalmology 2010; 117(9):1705-1712. https://doi.org/10.1016/j.ophtha.2010.01.034

4. Nemesure B, Honkanen R, Hennis A, Wu SY, Leske MC; Barbados Eye Studies Group. Incident open-angle glaucoma and intraocular pressure. Ophthalmology. 2007; 114(10):1810-1815. https://doi.org/10.1016/j.ophtha.2007.04.003

5. Erichev VP, Vitkov AA. Topical beta blockers: interaction and undesirable effects (analytical review). XVIII All-Russian Ophthalmology school 2019; 37-45. https://doi.org/10.30808/978-5-6040782-2019-1-1-37-44

6. Antonov A.A., Vitkov A.A., Agadzhanyan T.M. The efficacy and safety of the domestic travoprost generic in various modes of therapy for primary open-angle glaucoma. National Journal glaucoma 2021; 20(4): 50-56. https://doi.org/10.53432/2078-4104-2021-20-4-50-56

7. Erichev V.P., Basinsky S.N., Kuroyedov A.V. Moving on to surgical stage of glaucoma treatment. National Journal glaucoma 2023; 22(1): 92-102. https://doi.org/10.53432/2078-4104-2023-22-1-92-102

8. Petrov S.Yu., Lovpache Dzh.N., Loskutov I.A., Safronova D.M. The influence of local IOP-lowering therapy on the anterior segment tissues and outcome of glaucoma filtering surgery. Oftalmologičeskie vedomosti 2017; 10(4):41-47. https://doi.org/10.17816/OV10441-47

9. Melnik M.A., Mamikonyan V.R., Shmeleva-Kenoufi O.A., Mukha A.I. Hypotensive Treatment of Glaucoma — Minimally Invasive Surgery. Literature review. Ophthalmology in Russia 2022; 19(1):5-14. https://doi.org/10.18008/1816-5095-2022-1-5-14

10. Hristin M., Erichev V.P., Anisimova S.Yu., Anisimov S.I. Combined system of excessive scarring prevention in glaucoma surgery. Glauсoma 2010; 2:16-18.

11. Erichev V.P., Khachatryan G.K. Glycosaminoglycan matrix in the prevention of conjunctival scleral scarring with sinustrabeculectomy. National Journal glaucoma 2018; 17(1):37-42. https://doi.org/10.25700/NJG.2018.01.04

12. Volkova N.V., Iureva T.N., Kuroyedov A.V. Analysis of the effectiveness and safety of implantation of drainage devices in glaucoma surgery. National Journal glaucoma. 2024; 23(2):79-94. https://doi.org/10.53432/2078-4104-2024-23-2-79-94

13. Egorov E.A., Kuroyedov A.V., Gorodnichiy V.V. et al. Early and longterm outcomes of glaucoma surgery the results of multicenter study in CIS countries. RMJ Clinical Ophthalmology 2017; 1:25-34. https://doi.org/10.21689/2311-7729-2017-17-1-25-34

14. Suleiman E.A., Petrov S.Yu. New techniques of sinus trabeculectomy with prolonged hypotensive effect. Russian Ophthalmological Journal 2022; 15(3):61-66. https://doi.org/10.21516/2072-0076-2022-15-3-61-66

15. Petrov S.Yu., Safonova D.M. The modern concept of wound healing in glaucoma surgery. Ophthalmology in Russia 2015; 12(4):9-16. https://doi.org/10.18008/1816-5095-2015-4-9-17

16. Petrov S.Ju. Modern concept of fight against excessive scarring after fistulizing glaucoma surgery. Anti-inflammatory drugs and new trends. Ophthalmology in Russia 2017; 14(2):99–105. https://doi.org/10.18008/1816-5095-2017-1-5-11

17. Zahidov A.B., Seleznev A.V., Gazizova I.R., Kuroyedov A.V. et al. Intraoperative use of antimetabolites in glaucoma surgery. National Journal glaucoma 2020; 19(1):40-45. https://doi.org/10.25700/NJG.2020.01.06

18. Mamikonjan V.R., Petrov S.Ju., Safonova D.M. VEGF inhibitors in glaucoma surgery. Oftalmologičeskie vedomosti 2016; 9(1):47-55.

19. Petrov S.Yu. Principles of modern incisional surgery for glaucoma by the 4th Edition of the Terminology and Guidelines for Glaucoma of the European Glaucoma Society. RMJ Clinical Ophthalmology 2017; 17(3):184-189. https://doi.org/10.21689/2311-7729-2017-17-3-184-189

20. Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. FASEB J 2004; 18(7):816-827. https://doi.org/10.1096/fj.03-1273rev

21. Iureva T.N., Malisheva Yu.V. Features of the reparative process after antiglaucoma surgery. National Journal glaucoma. 2023; 22(4):89-98. https://doi.org/10.53432/2078-4104-2023-22-4-89-98

22. Malyugin BE, Sidorova AV, Starostina AV, Zhuravlev AS, Khaletskaya AA, Eliseeva MA, Smirnova EA. Pharmacological modulation of wound healing in glaucoma surgery. Vestn Oftalmol 2022; 138(4): 136-143. https://doi.org/10.17116/oftalma2022138041136.

23. Gualdi G, Costantini E, Reale M, Amerio P. Wound Repair and Extremely Low Frequency-Electromagnetic Field: Insight from In Vitro Study and Potential Clinical Application. Int J Mol Sci 2021; 22(9):5037. https://doi.org/10.3390/ijms22095037

24. Shaw TJ, Martin P. Wound repair at a glance. J Cell Sci 2009; 122(Pt 18):3209-13. https://doi.org/10.1242/jcs.031187

25. Gonzalez AC, Costa TF, Andrade ZA, Medrado AR. Wound healing — A literature review. An Bras Dermatol 2016; 91(5):614-620. https://doi.org/10.1590/abd1806-4841.20164741

26. Zada M, Pattamatta U, White A. Modulation of Fibroblasts in Conjunctival Wound Healing. Ophthalmology 2018; 125(2):179-192. https://doi.org/10.1016/j.ophtha.2017.08.028

27. Mack M. Inflammation and fibrosis. Matrix Biol 2018; 68-69:106-121. https://doi.org/10.1016/j.matbio.2017.11.010

28. Dhall S, Wijesinghe DS, Karim ZA, Castro A, Vemana HP, Khasawneh FT, Chalfant CE, Martins-Green M. Arachidonic acid-derived signaling lipids and functions in impaired healing. Wound Repair Regen 2015; 23(5):644-656. https://doi.org/10.1111/wrr.12337.

29. Bautista-Hernández LA, Gómez-Olivares JL, Buentello-Volante B, Bautista-de Lucio VM. Fibroblasts: The Unknown Sentinels Eliciting Immune Responses Against Microorganisms. Eur J Microbiol Immunol (Bp) 2017; 7(3):151-157. https://doi.org/10.1556/1886.2017.00009.

30. Sunkari VG, Aranovitch B, Portwood N, Nikoshkov A. Effects of a lowintensity electromagnetic field on fibroblast migration and proliferation. Electromagn Biol Med 2011; 30(2):80-85. https://doi.org/10.3109/15368378.2011.566774

31. Shu DY, Lovicu FJ. Myofibroblast transdifferentiation: The dark force in ocular wound healing and fibrosis. Prog Retin Eye Res 2017; 60: 44-65. https://doi.org/10.1016/j.preteyeres.2017.08.001.

32. de la Rosa X, Norris PC, Chiang N, Rodriguez AR, Spur BW, Serhan CN. Identification and Complete Stereochemical Assignments of the New Resolvin Conjugates in Tissue Regeneration in Human Tissues that Stimulate Proresolving Phagocyte Functions and Tissue Regeneration. Am J Pathol 2018; 188(4):950-966. https://doi.org/10.1016/j.ajpath.2018.01.004

33. Krönke G, Reich N, Scholtysek C, Akhmetshina A, Uderhardt S, Zerr P, Palumbo K, Lang V, Dees C, Distler O, Schett G, Distler JH. The 12/15-lipoxygenase pathway counteracts fibroblast activation and experimental fibrosis. Ann Rheum Dis 2012; 71(6):1081-1087. https://doi.org/10.1136/annrheumdis-2011-200745

34. Qu X, Zhang X, Yao J, Song J, Nikolic-Paterson DJ, Li J. Resolvins E1 and D1 inhibit interstitial fibrosis in the obstructed kidney via inhibition of local fibroblast proliferation. J Pathol 2012; 228(4):506-519. https://doi.org/10.1002/path.4050

35. Zheng S, Wang Q, D'Souza V, Bartis D, Dancer R, Parekh D, Gao F, Lian Q, Jin S, Thickett DR. ResolvinD1 stimulates epithelial wound repair and inhibits TGF-β-induced EMT whilst reducing fibroproliferation and collagen production. Lab Invest 2018; 98(1):130-140. https://doi.org/10.1038/labinvest.2017.114.

36. Perretti M, Leroy X, Bland EJ, Montero-Melendez T. Resolution Pharmacology: Opportunities for Therapeutic Innovation in Inflammation. Trends Pharmacol Sci. 2015; 36(11):737-755. https://doi.org/10.1016/j.tips.2015.07.007

37. Hinz B. Myofibroblasts. Exp Eye Res. 2016; 142:56-70. https://doi.org/10.1016/j.exer.2015.07.009.

38. Paul Ehrlich H, Sun B, Kainth KS, Kromah F. Elucidating the mechanism of wound contraction: rapid versus sustained myosin ATPase activity in attached-delayed-released compared with free-floating fibroblast-populated collagen lattices. Wound Repair Regen. 2006; 14(5):625-632. https://doi.org/10.1111/j.1743-6109.2006.00170.x

39. Hinz B. The myofibroblast: paradigm for a mechanically active cell. J Biomech. 2010; 43(1):146-155. https://doi.org/10.1016/j.jbiomech.2009.09.020

40. Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 2012; 18(7):1028-1040. https://doi.org/10.1038/nm.2807.

41. Recchiuti A, Serhan CN. Pro-Resolving Lipid Mediators (SPMs) and Their Actions in Regulating miRNA in Novel Resolution Circuits in Inflammation. Front Immunol 2012; 3:298. https://doi.org/10.3389/fimmu.2012.00298

42. Wang PH, Huang BS, Horng HC, Yeh CC, Chen YJ. Wound healing. J Chin Med Assoc 2018; 81(2):94-101. https://doi.org/10.1016/j.jcma.2017.11.002


Review

For citations:


Yusef Yu.N., Antonov А.А., Subbot А.М., Vitkova I.I., Emets E.V., Vitkov A.A., Semenov E.D. Excessive scarring in glaucoma surgery. Part 1: Current concepts of wound healing in glaucoma surgery. National Journal glaucoma. 2025;24(2):84-92. (In Russ.) https://doi.org/10.53432/2078-4104-2025-24-2-84-92

Views: 88


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)