Current concepts of the role of biomechanical factors in the pathogenesis and diagnosis of normal-tension glaucoma
https://doi.org/10.53432/2078-4104-2025-24-3-76-88
Abstract
Normal-tension glaucoma (NTG) is a complex form of primary open-angle glaucoma characterized by progressive optic nerve damage despite normal intraocular pressure (IOP) levels.
This review summarizes current concepts regarding the key role of biomechanical factors in the pathogenesis and diagnosis of NTG. Particular emphasis is placed on the structural and functional properties of the corneoscleral shell, including the cornea and sclera, as well as the lamina cribrosa (LC), which determine tissue resistance to mechanical stress. Modern methods for assessing biomechanical properties — such as corneal hysteresis, dynamic tonometry (ORA, Corvis ST), and lamina cribrosa imaging using optical coherence tomography — are of special importance, as they allow the detection of early changes that may not be identified with conventional diagnostic tools.
The review emphasizes the need for further research to standardize biomechanical parameters and develop novel diagnostic approaches, including stress tests. Integrating biomechanical data into clinical practice may improve the early detection of NTG.
About the Authors
L. L. ArutyunyanRussian Federation
Dr. Sci. (Med.), Professor at the Academic Department of Ophthalmology, Head of the Diagnostics Department
2/1 Barricadnaya St., Moscow, 125993
10 Bld. 1 Poliny Osipenko St., Moscow, 123007
S. Yu. Anisimova
Russian Federation
Dr. Sci. (Med.), Professor, ophthalmologist, Director
10 Bld. 1 Poliny Osipenko St., Moscow, 123007
S. I. Anisimov
Russian Federation
Dr. Sci. (Med.), Professor at the Academic Department of Eye Diseases, Scientific Director
4 Dolgorukovskaya St., Moscow, 127006
10 Bld. 1 Poliny Osipenko St., Moscow, 123007
S. Yu. Mammadova
Russian Federation
postgraduate student, ophthalmologist
2/1 Barricadnaya St., Moscow, 125993
10 Bld. 1 Poliny Osipenko St., Moscow, 123007
A. A. Bratchuk
Russian Federation
ophthalmologist, candidate student
10 Bld. 1 Poliny Osipenko St., Moscow, 123007
2/1 Barricadnaya St., Moscow, 125993
References
1. Natsionalnoe rukovodstvo po glaukome dlya praktikuyuschikh vrachei [National guidance of glaucoma for practitioners]. 4rd edition, updated and enhanced. Egorov E.A., Erichev V.P., eds. Moscow, GEOTARMedia Publ., 2019. 384 p. https://doi.org/10.33029/9704-5442-8-GLA-2020-1-384.
2. Chen M.J. Normal tension glaucoma in Asia: Epidemiology, pathogenesis, diagnosis, and management. Taiwan J Ophthalmol 2020; 10(4):250-254. https://doi.org/10.4103/tjo.tjo_30_20.
3. Jacky W.L., Poemen P.C., XiuJuan Z., Li J. C., Jost B.J. Latest Developments in Normal-Pressure Glaucoma: Diagnosis, Epidemiology, Genetics, Etiology, Causes and Mechanisms to Management. Asia Pac J Ophthalmol (Phila) 2019; 8(6):457-468. https://doi.org/10.1097/01.APO.0000605096.48529.9c
4. Vodovozov A.M. Tolerantnoe i intolerantnoe vnutriglaznoe davlenie pri glaukome [Tolerant and intolerant intraocular pressure in glaucoma]. Volgograd, 1991. 160 p.
5. National Ophthalmology Guidelines: Avetisov S.E., Egorov E.A., Moshetova L.K., Neroev V.V., Takhchidi Kh.P., eds. Moscow, GEOTARMedia, 2008. 19-25 pp.
6. Ustinova E.I. Methods for early glaucoma diagnostics. Moscow, Meditsina Publ., 1966. 190 p.
7. Volkov V.V., Suhinina L.B, Ter-Andriasov E.L. Compression-perimeter probe in express diagnosis of glaucoma and pre-glaucoma. Glaucoma: Collection of scientific articles. Alma-Ata, 1980, 5:43-52.
8. Petrov S.Yu. Modern view on normal-tension glaucoma. Russian Annals of Ophthalmology 2020; 136(6):57-64. https://doi.org/10.17116/oftalma202013606157
9. Tham Y., Li X., Wong T., Quigley H., Aung T., Cheng C. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 2014; 121(11):2081-2090. https://doi.org/10.1016/j.ophtha.2014.05.013.
10. Nesterov A.P., Alyabieva Zh.Yu. Normal-tension glaucoma: current perspectives on pathogenesis, diagnosis, clinical presentation and treatment. Glaucoma 2005; 3:66-75.
11. Avetisov S.E., Bubnova I.A., Antonov A.A. Investigation of corneal biomechanical properties in patients with normal-tension and primary open-angle glaucoma. Russian Annals of Ophthalmology 2008; 124(5):14-16.
12. Iomdina E.N., Arutunyan L.L., Katargina L.A., Kiseleva O.A., Filippova O.M. Interrelation between corneal hysteresis and structural functional parameters of the optic nerve in different stages of primary open angle glaucoma. Russian ophthalmological Journal 2009; 2(3):17-23.
13. Iomdina E.N., Bauer S.M., Kotlyar K.E. Biomehanika glaza: teoreticheskie aspekty i klinicheskie prilozheniya [Biomechanics of the Eye: Theoretical Aspects and Clinical Applications]. Edited by V.V. Neroev. Moscow, Real Time Publ., 2015. 208 p.
14. Volkov V.V., Simakova I.L., Kulikov A.N., Harakozov A.S., Sulejmanova A.R., Filippov I.A. New morphometric criteria in the study of the pathogenesis of normal pressure glaucoma. Russian Annals of Ophthalmology 2020; 136(2):49-55. https://doi.org/10.17116/oftalma202013602149
15. Volkov V.V, Sukhinina L.B, Ustinova E.I. Glaukoma, preglaukoma, oftalmogipertenziya [Glaucoma, pre-glaucoma, ocular hypertension]. Moscow, Meditsina Publ., 1985. 216 p.
16. Makashova, N. V., Vasilyeva, A. E. Biomechanical parameters of the fibrous tunic of the eye during unloading tests in primary open-angle glaucoma. Russian Annals of Ophthalmology 2017; 133(4):31-36. https://doi.org/10.17116/oftalma2017133431-36
17. Nesterov A.P., Aliab’eva Z.Yu, Lavrent’ev A.V. Normal-pressure glaucoma: a hypothesis of pathogenesis. Russian Annals of Ophthalmology 2003; 119(2):3-6.
18. Grigoreva E.G, Abaimov M.A, Saifullina I.A. Certain aspects of the etiology of normal-pressure glaucoma. Russian Annals of Ophthalmology 2003; 119(3):8-11.
19. Lestak J., Pitrova S., Nutterova E., Bartosova L. Normal tension vs high tension glaucoma: an overview. Cesk Slov Oftalmol 2019; 75(2):55-59.
20. Neroev V. V., Mikhailova L. A. Ophthalmic morbidity in Russia. In: Ophthalmology: National guidelines. S.E. Avetisov, E.A. Egorov, L.K. Moshetova, Kh.P. Takhchidi, eds. Moscow, GEOTAR-Media, 2018. 15-19.
21. Kim K.E, Park K.H. Update on the Prevalence, Etiology, Diagnosis, and Monitoring of Normal-Tension Glaucoma. Asia Pac J Ophthalmol (Phila) 2016; 5(1):23-31. https://doi.org/10.1097/APO.0000000000000177.
22. Volkov V.V., Suhinina L.B., Ter-Andriasov E.L. On vacuum application in the compression perimetry probe in glaucoma. Russian Annals of Ophthalmology 1981; 2:22-25.
23. Iomdina E.N., Petrov S.Yu., Antonov A.A. et al. The corneoscleral shell of the eye: potentials of assessing biomechanical parameters in normal and pathological conditions. Ophthalmology in Russia 2016; 13(2):62-68. https://doi.org/10.18008/1816-5095-2016-2-62-68
24. Safa B.N, Wong C.A, Ha J., Ethier C.R. Glaucoma and biomechanics. Curr Opin Ophthalmol 2021; 33(2):80-90. https://doi.org/10.1097/ICU.0000000000000829.
25. Iomdina E.N., Ignatyeva N.Yu., Danilov N.A., et al. Biochemical, structural and biomechanical features of the human scleral matrix in primary open-angle glaucoma. Russian Annals of Ophthalmology 2011; 6:10-14.
26. Iomdina E.N., Kiseleva O.A., Yakubova L.V., Khoziev D.D. Lamina cribrosa in glaucoma: biomechanical properties and possibilities of their clinical control. Russian Ophthalmological Journal 2018; 11(3):76-83. https://doi.org/10.21516/2072-0076-2018-11-3-76-83
27. Kurysheva, N. I., Kim, V. Y., Kim, V. E., Plieva, Kh. M. The role of the scleral lamina cribrosa structure in glaucoma diagnosis and treatment: Collagen remodeling of the lamina cribrosa and therapeutic intervention pathways. Russian Annals of Ophthalmology 2023; 139(4): 121-126. https://doi.org/10.17116/oftalma202313904112
28. Seo J.H., Kim T.W., Weinreb R.N. Lamina cribrosa depth in healthy eyes. Invest Ophthalmol 2014; 55(3):1241-1251. https://doi.org/10.1167/iovs.13-12536
29. Lee S.H., Kim T.W., Lee E.J., Girard M.J., Mari J.M. Diagnostic Power of Lamina Cribrosa Depth and Curvature in Glaucoma. Invest Ophthalmol 2017; 58 (2): 755-762. https://doi.org/10.1167/iovs.16-20802
30. Quigley H.A., Hohman R.M., Addicks E.M., et al. Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma. Am J Ophthalmol 1983; 95:673-691.
31. Roberts M.D., Sigal I.A., Liang Y., Burgoyne C.F., Downs J.C. Changes in the biomechanical response of the optic nerve head in early experimental glaucoma. Invest Ophthalmol 2010; 51(11):5675-5684. https://doi.org/10.1167/iovs.10-5411
32. Quigley H.A., Addicks E.M. Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Arch Ophthalmol 1981; 99(1):137-143.
33. Boote C., Sigal A., Grytz R., Yi Hua Y., Nguyen T, Michael J A Girard. Scleral structure and biomechanics. Prog Retin Eye Res 2019; 74:100773. https://doi.org/10.1016/j.preteyeres.2019.100773
34. Nguyen C, Cone FE, Nguyen TD, Coudrillier B, Pease ME, Steinhart MR, Oglesby EN, Jefferys JL, Quigley HA. Studies of scleral biomechanical behavior related to susceptibility for retinal ganglion cell loss in experimental mouse glaucoma. Invest Ophthalmol Vis Sci 2013; 54(3): 1767-1780. https://doi.org/10.1167/iovs.12-10952
35. Girard MJ, Dupps WJ, Baskaran M, Scarcelli G, Yun SH, Quigley HA, Sigal IA, Strouthidis NG. Translating ocular biomechanics into clinical practice: current state and future prospects. Curr Eye Res 2015; 40(1):1-18. https://doi.org/10.3109/02713683.2014.914543
36. Korneva A, Kimball EC, Jefferys JL, Quigley HA, Nguyen TD. Biomechanics of the optic nerve head and peripapillary sclera in a mouse model of glaucoma. J R Soc Interface 2020; 17(173):20200708. https://doi.org/10.1098/rsif.2020.0708
37. Robert A Clark, Soh Youn Suh, Joseph Caprioli, JoAnn A Giaconi, Kouros Nouri-Mahdavi, Simon K Law, Laura Bonelli, Anne L Coleman, Joseph L Demer. Adduction-Induced Strain on the Optic Nerve in Primary Open Angle Glaucoma at Normal Intraocular Pressure. Curr Eye Res 2020; 46(4):568-578. https://doi.org/10.1080/02713683.2020.1817491
38. Carolina N Susanna, Alberto Diniz-Filho, Fábio B Daga, Bianca N Susanna, Feilin Zhu, Nara G Ogata, Felipe A Medeiros. A Prospective Longitudinal Study to Investigate Corneal Hysteresis as a Risk Factor for Predicting Development of Glaucoma. Am J Ophthalmol 2018; 187:148-152. https://doi.org/10.1016/j.ajo.2017.12.018
39. Deol M, Taylor DA, Radcliffe, NM. Corneal hysteresis and its relevance to glaucoma. Cur Opin Ophthalmol 2015; 26(2):96-102. https://doi.org/10.1097/ICU.0000000000000130.
40. Hong Y, Shoji N, Morita T, Hirasawa K, Matsumura K, Kasahara M, et al. Comparison of corneal biomechanical properties in normal tension glaucoma patients with different visual field progression speed. International J Ophthalmol 2016; 9(7):973-978. https://doi.org/10.18240/ijo.2016.07.06.
41. Shin J, Lee JW, Kim EA, Caprioli J. The effect of corneal biomechanical properties on rebound tonometer in patients with normal-tension glaucoma. Am J Ophthalmol 2015; 159(1):144-154. https://doi.org/10.1016/j.ajo.2014.10.007.
42. Morita T, Shoji N, Kamiya K, Fujimura F, Shimizu K. Corneal biomechanical properties in normal-tension glaucoma. Acta Ophthalmol 2012; 90(1):48-53. https://doi.org/10.1111/j.1755-3768.2011.02242.x.
43. D Pensyl, M Sullivan-Mee, M Torres-Monte, K Halverson, C Qualls. Combining corneal hysteresis with central corneal thickness and intraocular pressure for glaucoma risk assessment. Eye (Lond) 2012; 26(10):1349-1356. https://doi.org/10.1038/eye.2012.164
44. Pierscionek B.K., Asejczyk-Widlicka M., Schachar R.A. The effect of changing intraocular pressure on the corneal and scleral curva tures in the fresh porcine eye. Brit J Ophthalmol 2007; 91(6):801-803. https://doi.org/10.1136/bjo.2006.110221.
45. Giuliano Scarcelli, Sabine Kling, Elena Quijano, Roberto Pineda, Susana Marcos, Seok Hyun Yun. Brillouin Microscopy of Collagen Crosslinking: Noncontact Depth-Dependent Analysis of Corneal Elastic Modulus. Invest Ophthalmol Vis Sci 2013; 54(2):1418-1425. https://doi.org/10.1167/iovs.12-11387
46. Scarcelli G, Yun SH. Brillouin optical microscopy of the human eye in vivo. Opt Express 2012; 20(8):9197-9202. https://doi.org/10.1364/OE.20.009197
47. Avetisov S. E., Bubnova I. A., Antonov A. A. Corneal pathology: Investigation of the influence of corneal biomechanical properties on tonometry indicators. Russian Annals of Ophthalmology 2009; 138(4), 30-33.
48. Avetisov S.E., Osipyan G.A., Abukerimova, A.K., Akovantseva A.A., Efremov, Y.M., Frolova A.A., Kotova S.L., Timashev P.S. Experimental studies of corneal biomechanical properties. Russian Annals of Ophthalmology 2022; 138(3):124-131. https://doi.org/10.17116/oftalma202213803112
49. Svetikova L. A., Iomdina E. N., Kiseleva O. A. Biomechanical and biochemical features of the corneoscleral eye capsule in primary open-angle glaucoma. Russian Ophthalmological Journal 2013; 2:105-112.
50. Burgoyne C.F., Downs J.C., Bellezza A.J., et al. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res 2005; 24(1):39-73. https://doi.org/10.1016/j.preteyeres.2004.06.001
51. Arutyunyan L.L., Anisimova S.Yu., Morozova Yu.S., Anisimov S.I. Biometric and morphometric parameters of the lamina cribrosa in patients with different stages of primary open-angle glaucoma. National Journal glaucoma 2021; 20(3):11-19.
52. Kiseleva O. A., Iomdina E. N., Yakubova L. V., Khoziev D. D. The scleral lamina cribrosa in glaucoma: Biomechanical features and possibilities of their clinical monitoring. Russian Ophthalmological Journal 2018; 11(3):76-83. https://doi.org/10.21516/2072-0076-2018-11-3-76-83
53. Kotlyar K.E., Volkov V.V., Svetlova, O.V., Smolnikov B.A. Biomehanicheskaya model’ vzaimodeystviya akkomodatsionnoy i drenazhnoi regulatornykh system glaznogo yabloka [Biomechanical model of interaction between accommodative and drainage regulatory systems of the human eyeball]. Nizhny Novgorod, 1996. 101-102 pp.
54. Fisenko N.V. Cornea: Anatomical and functional features, new methods of in vivo diagnosis of pathological conditions. Journal of Anatomy and Histopathology 2022; 11(2):78-86.
55. Volkov V.V. Sushchestvennyi element glaukomatoznogo protsessa, ne uchityvaemyi v klinicheskoi praktike. Russian Ophthalmological Journal 1976; 7:500-504.
56. Danilov N.A., Ignatieva N.Yu., Iomdina E.N. Study of sclera in glaucomatous eyes using physicochemical analysis. Biofizika 2011; 56:520- 526.
57. Arutyunyan L.L. The role of viscoelastic properties of the eye in target pressure determination and evaluation of glaucomatous process development. Abstract of Candidate of Medical Sciences dissertation. Moscow, 2009.
58. Avila G.G. Collagen metabolism in human aqueous humor from primary open-angle glaucoma. Arch Ophthalmol 1995; 113(10):1319-1323. https://doi.org/10.1001/archopht.1995.01100100107039.
59. Keeley F.W., Morin J.D., Vesele S. Characterization of collagen from normal human sclera. Exp Eye Res 1984; 39(5):533-542. https://doi.org/10.1016/0014-4835(84)90053-8.
60. Zeng G., Millis A.J.T. Differential regulation of collagenase and stromelysin mRNA in late passage cultures of human fibroblasts. Exp Cell Res 1996; 222(1):150-156. https://doi.org/10.1006/excr.1996.0019.
61. Avetisov S.E., Bubnova I.A., Antonov, A.A. On the question of normal values of biomechanical parameters of the fibrous tunic of the eye. Glaukoma 2021; 3:5-11.
62. Scarcelli G., Kling S., Quijano E., Pineda R., Marcos S., Yun S.H. Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus. Invest Ophthalmol 2013; 54(2):1418-1425. https://doi.org/10.1167/iovs.12-11387
63. Eremina M.V., Erichev V.P., & Yakubova L.V. Influence of central corneal thickness on intraocular pressure in normal and glaucomatous eyes. Glaukoma 2006; 4:78-83.
64. Avetisov S.E., Bubnova I.A., Antonov A.A. Corneal biomechanical properties: Clinical significance, research methods, and possibilities of systematizing study approaches. Russian Annals of Ophthalmology 2010; 126(6):3-7.
65. Avetisov S.E., Bubnova I.A., Antonov A.A. The study of the corneal biomechanical properties on the intraocular pressure measurement. Bulletin of Siberian branch of Russian Academy of Medical Sciences 2009; 29(4):30-33.
66. Avetisov S.E., Bubnova I.A., Antonov, A.A. Age-related changes in biomechanical properties of the fibrous tunic of the eye. Glaukoma 2013; 3(2):10-15.
67. Avetisov S.E., Mamikonyan V.R., Zavalishin N.N., Nenyukov A.K. Experimental study of mechanical characteristics of the cornea and adjacent scleral areas. Russian Ophthalmological Journal 1988; 4:233-237.
68. Akopyan A.I., Erichev V.P., Iomdina, E.N. Value of ocular biomechanical parameters in interpreting the development of glaucoma, myopia, and combined pathology. Glaukoma 2008; 1:9-14.
69. Koshits I.N., Svetlova O.V., Ryabtseva A.A., Makarov F.N., Zaseeva M.V., Mustyatsa V. F. The role of rigidity of the eye fibrous coat and scleral fluctuation in the early diagnosis of open-angle glaucoma. Oftal’mologicheskij zhurnal 2010; 6:76-88.
70. Svetlova O.V., Koshits I.N., Pankratov, R.M., Makarovskaya O.V., Zaseeva, M.V. Relationship between intraocular pressure and involutional fluctuations of ocular rigidity. Russian Annals of Ophthalmology 2024; 140(3):11-18. https://doi.org/10.17116/oftalma202414003111
71. Salvetat ML, Zeppieri M, Tosoni C, Felletti M, Grasso L, Brusini P. Corneal Deformation Parameters Provided by the Corvis-ST PachyTonometer in Healthy Subjects and Glaucoma Patients. Glaucoma 2015; 24(8):568-574. https://doi.org/10.1097/IJG.0000000000000133.
72. Ji C, Yu J, Li T, Tian L, Huang Y, Wang Y, Zheng Y. Dynamic curvature topography for evaluating the anterior corneal surface change with Corvis ST. Biomed Eng Online 2015; 4:14:53. https://doi.org/10.1186/s12938-015-0036-2.
73. Lee R, Chang RT, Wong IY, Lai JS, Lee JW, Singh K. Novel Parameter of Corneal Biomechanics That Differentiate Normals From Glaucoma. Glaucoma 2016; 25(6):603-609. https://doi.org/10.1097/IJG.0000000000000284.
74. Tian L, Wang D, Wu Y, Meng X, Chen B, Ge M, Huang Y. Corneal biomechanical characteristics measured by the CorVis Scheimpflug technology in eyes with primary open-angle glaucoma and normal eyes. Acta Ophthalmol 2016; 94(5):317-324. https://doi.org/10.1111/aos.12672.
75. Medeiros FA, Meira-Freitas D, Lisboa R, Kuang TM, Zangwill LM, Weinreb RN. Corneal hysteresis as a risk factor for glaucoma progression: a prospective longitudinal study. Ophthalmology 2013; 120(8):1533-1540. https://doi.org/10.1016/j.ophtha.2013.01.032.
76. Zimprich L., Diedrich J., Bleeker A., Schweitzer J.A. Corneal Hysteresis as a biomarker of glaucoma: current insights. Clin Ophthalmol 2020; 14:2255-2264. https://doi.org/10.2147/OPTH.S236114
77. Park K., Shin J., Lee J. Relationship between corneal biomechanical properties and structural biomarkers in patients with normal-tension glaucoma: a retrospective study. BMC Ophthalmol 2018; 18:7. https://doi.org/10.1186/s12886-018-0673-x
78. Wells A.P., Garway-Heath D.F., Poostchi A., et al. Corneal hysteresis but not corneal thickness correlates with optic nerve surface compliance in glaucoma patients. Invest Ophthalmol 2008; 49:3262-3268. https://doi.org/10.1167/iovs.07-1556
79. Park L.H.Y, Lee N.Y., Choi J.A., Park C.K. Measurement of scleral thickness using swept-source optical coherence tomography in patients with open-angle glaucoma and myopia. Am J Ophthalmol 2014; 157(4):876-884. https://doi.org/10.1016/j.ajo.2014.01.007
80. Omodaka K., Horii T., Takahashi S., Kikawa T., Matsumoto A., Yukihiro Shiga Y., Maruyama K., Yuasa T., Akiba M., Nakazawa T. 3D Evaluation of the Lamina Cribrosa with Swept-Source Optical Coherence Tomography in Normal Tension Glaucoma. PLoS One 2015; 10(4):e0122347. https://doi.org/10.1371/journal.pone.0122347
81. Arutyunyan L.L., Anisimova S.Y., Anisimov S. I., Nagieva S.Y. Morphometric parameters of the lamina cribrosa in patients with normal-tension glaucoma. Sovremennye Tekhnologii v Oftal'mologii 2024; 1(4):87-88. https://doi.org/10.25276/2312-4911-2024-4-87-88
82. Quigley H, Arora K, Idrees S, et al. Biomechanical responses of lamina cribrosa to intraocular pressure change assessed by optical coherence tomography in glaucoma eyes. Invest Ophthalmol 2017; 58(5):2566-2577. https://doi.org/10.1167/iovs.16-21321
83. Hernandez M.R. Increased elastin expression in astrocytes of the lamina cribrosa in response to elevated intraocular pressure. Invest Ophthalmol 2001; 42(10):2303-2314.
84. Quigley H.A., Brown A., Dorman -Pease M.A. Alterations in elastin of the optic nerve head in human and experimental glaucoma. Br J Ophthalmol 1991; 75:552-557.
85. Girard M.J.A., Downs J.C., Burgoyne C.F. et al. Scleral Biomechanics in Glaucoma. XIX Biennial ISER Meeting. Montreal. 2010: 155.
86. Girard M.J.A., Suh J.-K.F., Bottlang M. et al. Biomechanical Changes in the Sclera of Monkey Eyes Exposed to Chronic IOP. Invest Ophthal 2011; 52(8):5656-5669.
87. Girard M.J., Suh J.K., Bottlang M., Burgoyne C.F., Downs J.C. Scleral biomechanics in the aging monkey eye. Invest Ophthalmol 2009; 50:5226-5237. https://doi.org/10.1167/iovs.08-3363.
88. Thornton I.L., Dupps W.J., Roy A.S., Krueger R.R. Biomechanical Effects of Intraocular Pressure Elevation on Optic Nerve/Lamina Cribrosa before and after Peripapillary Scleral Collagen Cross-Linking. Invest Ophthal 2009; 50(3):1227-1233. https://doi.org/10.1167/iovs.08-1960.
89. Sigal I.A., Flanagan J.G., Ethier C.R. Factors Influencing Optic Nerve Head Biomechanics. Invest Ophthalmol 2005; 46(11):4189-4199. https://doi.org/10.1167/iovs.05-0541.
90. Braunsmann C, Hammer CM, Rheinlaender J, Kruse FE, Schaffer TE, Schlotzer-Schrehardt U, et al. Evaluation of Lamina cribrosa and Peripapillary Sclera Stiffness in Pseudoexfoliation and Normal Eyes by Atomic Force Microscopy. Investig Opthalmology 2012; 53(6):2960. https://doi.org/10.1167/iovs.11-8409
91. Leung LK, Ko MW, Ye C, Lam DC, Leung CK. Noninvasive measurement of scleral stiffness and tangent modulus in porcine eyes. Invest Ophthalmol Vis Sci 2014; 55(6):3721-3726. https://doi.org/10.1167/iovs.13-13674.
92. Bellezza A.J, Hart R.T, Burgoyne C.F. The optic nerve head as a biomechanical structure: initial finite element modeling. Invest Ophthalmol 2000; 41:2991-3000.
93. Bellezza A.J, Rintalan C.J, Thompson H.W, Downs J.C, Hart R.T, Burgoyne C.F. Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma. Invest Ophthalmol 2003; 44(2):623-637. https://doi.org/10.1167/iovs.01-1282.
94. Sigal I.A. Interactions between geometry and mechanical properties on the optic nerve head. Invest Ophthalmol 2009; 50(6):2785-2795. https://doi.org/10.1167/iovs.08-3095.
95. Sigal I.A., Flanagan J.G., Tertinegg I., Ethier C.R. Modeling individual-specific human optic nerve head biomechanics. Part I: IOP induced deformations and influence of geometry. Biomech Model Mechanobiol 2009; 8(2):85-98. https://doi.org/10.1007/s10237-008-0120-7.
96. Norman R.E., Flanagan J.G., Sigal I.A., Raucsch S.M.K., Tertinegg I., Ethier C.R. Finite element modeling of the human sclera: Influence on optic nerve head biomechanics and connections with glaucoma. Exp Eye Res 2011; 93(1):4-11. https://doi.org/10.1016/j.exer.2010.09.014.
97. Park HY, Jeon SH, Park CK. Enhanced depth imaging detects lamina cribrosa thickness differences in normal tension glaucoma and primary open angle glaucoma. Ophthalmology 2012;119(1):10-20. https://doi.org/10.1016/j.ophtha.2011.07.033
98. Furlanetto R.L, Facio A.C Jr, Hatanaka M, Susanna Junior R. Correlation between central corneal thickness and intraocular pressure peak and fluctuation during the water drinking test in glaucoma patients. Clinics (Sao Paulo) 2010; 65(10):967-970. https://doi.org/10.1590/s1807-59322010001000007.
99. Arutyunyan L.L., Anisimova S.Yu., Morozova Yu.S., Anisimov S.I. Biometric and morphometric parameters of the lamina cribrosa in patients with different stages of primary open-angle glaucoma. National Journal Glaucoma 2021; 20(3):11-19. https://doi.org/10.25700/2078-4104-2021-20-3-11-19
100. Barrancos C., Rebolleda G., Oblanca N., Cabarga C., Muñoz-Negrete F.J. Changes in lamina cribrosa and prelaminar tissue after deep sclerectomy. Eye (Lond) 2014; 28(1):58-65. https://doi.org/10.1038/eye.2013.238
101. Elsheikh A. Finite-element modeling of corneal biomechanical behavior. J Ref Surg 2010; 26,289-300. https://doi.org/10.3928/1081597X-20090710-01
102. Eilaghi A, Flanagan JG, Tertinegg I, et al. Biaxial mechanical testing of human sclera. Journal of Biomechanics 2010; 43(9):1696-1701. https://doi.org/10.1016/j.jbiomech.2009.10.031
103. Geraghty B, Jones SW, Rama P, et al. Age-related variations in the biomechanical properties of human sclera. Journal of the Mechanical Behavior of Biomedical Materials 2012; 16:181-191. https://doi.org/10.1016/j.jmbbm.2011.09.003
104. Downs J.C, Ensor M.E, Bellezza A.J. et al. Peripapillary scleral thickness in perfusion-fixed normal monkey eyes. Invest Ophthalmol Vis Sci 2002; 43(7):2229-2235. https://doi.org/10.1167/iovs.04-1122
105. Phillips J.R, Khalaj M, McBrien N.A. Induced myopia associated with increased scleral creep in chick and tree shrew eyes. Invest Ophthalmol Vis Sci 2000; 41(8):2028-2034.
106. Lari D.R., Schultz D.S., Wang A.S., Lee O.T., Stewart J.M. Scleral mechanics: comparing whole globe inflation and uniaxial testing. Exper Eye Res 2012; 94(1):128-135. https://doi.org/10.1016/j.exer.2011.11.017.
107. Li Lue, Bian A., Cheng G., Zhou Qi. Posterior displacement of the lamina cribrosa in normal-tension and high-tension glaucoma. Acta Ophthalmology. 2016. 94(6):492-500. https://doi.org/10.1111/aos.13012.
Review
For citations:
Arutyunyan L.L., Anisimova S.Yu., Anisimov S.I., Mammadova S.Yu., Bratchuk A.A. Current concepts of the role of biomechanical factors in the pathogenesis and diagnosis of normal-tension glaucoma. National Journal glaucoma. 2025;24(3):76-88. (In Russ.) https://doi.org/10.53432/2078-4104-2025-24-3-76-88

















