Preview

National Journal glaucoma

Advanced search

Top-list of errors in the management of glaucoma patients: ophthalmoscopy

Abstract

This paper presents the history of ophthalmoscopy development and establishment, emphasizes the necessity of using this method for diagnosing various eye diseases. The initial changes in the fundus can be crucial for establishing the diagnosis and monitoring them is essential for assessing the therapy effectiveness, defining surgical indications, as well as predicting disease progression in glaucoma patients. The article underlines the necessity of a detailed description of all the changes in the optic nerve head (ONH) and the surrounding tissue. In addition to describing we suggest making ophthalmoscopic sketches of the optic disc and retinal nerve fiber bundles, because in some cases a doctor can note and depict some changes in the fundus, that are not always well visualized later photographic images. The article describes basic principles of such methods as stereophotogrammetry, stereochronoskopy, stereochronometry, raster stereography and mentions diagnostic equipment available at different times on the ophthalmic devices market. Advantages and disadvantages of fundus photography are brought forward, as well as the techniques of confocal scanning laser ophthalmoscopy. Confocal laser scanning tomography, laser polarimetry and optical coherence tomography, which can be justly called the modern technologies, are described in this article along with a range of modern diagnostic equipment, necessary to perform these procedures. In this paper we present our own data and that of other researchers, both Russian and foreign, on how frequently ophthalmoscopy, sketching and fundus photography are used, and the application of modern methods of recording the state of the optic disc and surrounding structures. In addition to that we present the data from Russian and foreign guides and reference books on the application of various methods of recording the state of the fundus all over the world and standard frequency of performing these studies. The percentage of progression of various diseases is estimated according to ophthalmoscopy results. Finally, the paper underlines the necessity of using this technique in routine ophthalmological practice for diagnostic purposes, assessment of the disease dynamics and progression, making a correct choice of therapy and surgical indications in order to preserve the visual functions and patients’ quality of life.

About the Authors

O. I. Lebedev
Omsk state medical academy
Russian Federation


E. A. Kalizhnikova
Omsk state medical academy
Russian Federation


A. E. Yavorsky
Vykhodtsev Eye Hospital
Russian Federation


References

1. Ungar A.K., Wollstein G., Ishikawa H., et al. Evaluating objective and subjective quantitative parameters at the initial visit to predict future glaucomatous visual field progression. Ophthalmic Surg Las Imag 2012; 43(5): 416-424.

2. Song W., Wei Q., Feng L., Sarthy V., Jiao S., Liu X., et al. Multimodal photoacoustic ophthalmoscopy in mouse. J Biophotonics 2013; 6(6-7): 505-512.

3. Нестеров А.П. Глаукома. М.: Мединформагенство 2008; 360 с.

4. Нестеров А.П., Листопадова Н.А. Феномен западения височной половины ДЗНвдиагностике глаукоматозной атрофии. Вест. офтальмол. 1988; 2: 5-6

5. Акопян А.И. Офтальмоскопия: пособие для врачей, интернов, клинических ординаторов. Москва; 2011; 35 с

6. Bonotto L.B., Moreira A.T., Bortolotto C.M. Structural features of macular eyes of preschoolers born preterm: analysis by optical coherence tomography, and indirect ophthalmoscopy. Arq Bras Oftalmol 2013; 76(2): 98-104.

7. Plange N., Hirsch T., Bienert M. et al. Specifity of optic disc evaluation in healthy subjects with large optic discs and physiologic cupping using confocal scanning laser ophthalmoscopy. Klin Monbl Augenheilkd 2013 Jun 17 [Epub ahead of print].

8. Fred H.L. Little black bags, ophthalmoscopy, and the Roth spot. Tex Heart Inst J 2013; 40(2): 115-156.

9. Khurana A., Eisenhut C.A., Wan W., Ebrahimi K.B., Patel C., O’Brien J.M., et al. Comparison of the diagnostic value of MR imaging and ophthalmoscopy for the staging of retinoblastoma. Eur Radiol 2013; 23(5): 1271-1280.

10. Cankaya A.B., Beyazyildiz E., Ileri D., Yilmazbas P. Optic disc and retinal nerve fiber layer parameters of eyes with keratoconus. Ophthalmic Surg Lasers Imaging 2012; 43(5): 401-407.

11. Boyd B.F., Luntz M. Innovations in the glaucomatous etiology, diagnosis and management. English Edition; 2002; 396 p.

12. Haque R., Abouammoh M.A., Sharma S. Validation of the Queen’s University Ophthalmoscopy Objective Structured Clinical Examination Checklist to predict direct ophthalmoscopy proficiency. Can J Ophthalmol 2012; 47(6): 484-488.

13. Huang D., Chopra V., Lu A.T., Tan O., Francis B., Varma R. Does optic nerve head size variation affect circumpapillary retinal nerve fiber layer thickness measurement by optical coherence tomography? Invest Ophthalmol Vis Sci 2012; 53(8): 4990-4997.

14. Song W., Wei Q., Liu T., Kuai D., Burke J.M., Jiao S., Zhang H.F. Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform. J Biomed Opt 2012; 17(6): 061-206.

15. Куроедов А.В. Офтальмоскопическая характеристика изменений диска зрительного нерва и слоя нервных волокон при глаукоме (пособие для врачей). Москва: Столичный бизнес; 2011; 48 с.

16. Terminology and Guidelines for Glaucoma 3rd edition European Glaucoma Society; 2008; 183 p.

17. Sekeroglu M.A., Hekimoglu E., Sekeroglu H.T., et al. Alternative methods for the screening of retinopathy of prematurity: binocular indirect ophthalmoscopy vs wide-field digital retinal imaging. Eye 2013; 27(9): 1053-1057.

18. Курышева Н.И. Глаукомная оптическая нейропатия. Москва: МЕДпресс-информ; 2006; 136 с.

19. Heiden D., Margolis T.P., Lowinger A., Saranchuk P. Eye exam with indirect ophthalmoscopy for diagnosis of disseminated tuberculosis in patients with HIV/AIDS. Br J Ophthalmol 2013; 97(5): 668-689.

20. Patterson D.F., Ryan E.H. Controlled drainage of subretinal fluid using continuous monitoring with indirect ophthalmoscopy. JAMA Ophthalmol 2013; 131(2): 228-231.

21. Dubra A., Sulai Y.N. First-order design of a reflective viewfinder for adaptive optics ophthalmoscopy. Opt Express 2012; 20(24): 26596-26605.

22. Moral-Pumarega M.T., Caserío-Carbonero S., De-La-Cruz-Bértolo J., Tejada-Palacios P., Lora-Pablos D., Pallás-Alonso C.R. Pain and stress assessment after retinopathy of prematurity screening examination: indirect ophthalmoscopy versus digital retinal imaging. BMC Pediatr 2012; 28(12): 132.

23. Шалабаев О.Д., Шалабаева К.З., Амхадова М.А. Методика исследования сосудов глазного дна у больных с тяжелым течением флегмон челюстно-лицевой области. Стоматология 2012; 3: 46-47.

24. Sulai Y.N., Dubra A. Adaptive optics scanning ophthalmoscopy with annular pupils. Biomed Opt Express 2012; 3(7): 1647-1661.

25. Ермолаев А.П., Петров С.Ю., Новиков И.А., Жабицкий Д.Г. Доступная система создания банка цифровой фото- и видеоинформации в офтальмологии. Вестник офтальмологии 2003; 119(4): 63.

26. Zangwill L.M., Jain S., Dirkes K., He F., Medeiros F.A., Trick G.L., et al. The rate of structural change: the confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study. Am J Ophthalmol 2013; 155(6): 971-982.

27. Ooto S., Hangai M., Takayama K., et al. Comparison of cone pathologic changes in idiopathic macular telangiectasia types 1 and 2 using adaptive optics scanning laser ophthalmoscopy. Am J Ophthalmol 2013; 155(6): 1045-1057.

28. Mehta S., Hubbard G.B. 3rd. Avoiding neck strain in vitreoretinal surgery: an ergonomic approach to indirect ophthalmoscopy and laser photocoagulation. Retina 2013; 33(2): 439-441.

29. Arichika S., Uji A., Hangai M. et al. Noninvasive and direct monitoring of erythrocyte aggregates in human retinal microvasculature using adaptive optics scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci 2013; 54(6): 4394-4402.

30. Gvozdenović R., Risović D., Marjanović I., et al. The role of confocal scanning laser ophthalmoscopy in stereometric differentiation of eye papilla in ocular hypertension, normal tension glaucoma and primary open-angle glaucoma. Vojnosanit Pregl 2013; 70(3): 304-308.

31. Rasta S.H., Manivannan A., Sharp P.F. Spectral imaging technique for retinal perfusion detection using confocal scanning laser ophthalmoscopy. J Biomed Opt 2012; 17(11): 116005.

32. Puk O., de Angelis M.H., Graw J. Longitudinal fundus and retinal studies with SD-OCT: a comparison of five mouse inbred strains. Mamm Genome 2013; 24; (5-6): 198-205.

33. Lamparter J., Russell R.A., Schulze A., et al. Structure-function relationship between FDF, FDT, SAP, and scanning laser ophthalmoscopy in glaucoma patients. Invest Ophthalmol Vis Sci 2012; 53(12): 7553-7559.

34. Loukil I., Naija O., Hachicha F. Optical coherence tomography in Sjögren-Larsson Syndrome diagnosis. Bull Soc Belge Ophtalmol 2012; (320): 11-5.

35. Majander A.S., Lindahl P.M., Vasara L.K., et al. Anterior segment optical coherence tomography in congenital corneal opacities. Ophthalmology 2012; 119(12): 2450-2457.

36. Fremont A.M., Lee P.P., Mangione C.M., et al. Patterns for care open-angle glaucoma in managed care. Arch Ophthalmol 2003; 121(6): 121-126.

37. Friedman D.S., Nordstrom B., Mozzaffari E., et al. Glaucoma management among individuals enrolled in single comprehensive insurance plan. Ophthalmol 2005; 112(9): 1500-1504.

38. Hertzog L.H., Albrecht K.G., La Bree L., et al. Glaucoma care and conformance with preferred practice patterns. Examination of the private, community-based ophthalmologist. Ophthalmology 1996; 103(7): 1009-1013.

39. Song W., Wei Q., Jiao S., et al. Integrated photoacoustic ophthalmoscopy and spectral-domain optical coherence tomography. J Vis Exp 2013; 15(71).

40. Takeda M., Sato Y. Indentation of retinal pigment epithelium in polypoidal choroidal vasculopathy detected by retro-mode (scanning laser ophthalmoscopy). Nihon Ganka Gakkai Zasshi 2012; 116(10): 946-954.

41. Diniz B., Ribeiro R.M., Rodger D.C., et al. Drusen detection by confocal aperture-modulated infrared scanning laser ophthalmoscopy. Br J Ophthalmol 2013; 97(3): 285-290.

42. Akagi T., Hangai M., Takayama K., et al. In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci 2012; 53(7): 4111-4119.

43. Weinreb R.N., Greve E.L. Glaucoma diagnosis structure and function Reports and Consensus Statements of the 1st Global AIGS Consensus Meeting on «Structure and Function in the Management of Glaucoma». Kugler Publications. Amsterdam, The Netherlands; 2004; 179 p.

44. Milani B.Y., Majdi M., Green W., et al. The use of peer optic nerve photographs for teaching direct ophthalmoscopy. Ophthalmology 2013; 120(4): 761-765.

45. Seymenoğlu G., Başer E., Oztürk B. Comparison of spectraldomain optical coherence tomography and Heidelberg retina tomograph III optic nerve head parameters in glaucoma. Ophthalmologica 2013; 229(2): 101-105.

46. Kernt M., Hadi I., Pinter F., et al. Assessment of diabetic retinopathy using nonmydriatic ultra-widefield scanning laser ophthalmoscopy (Optomap) compared with ETDRS 7-field stereo photography. Diabetes Care 2012; 35(12): 2459-2463.

47. Valet V., Lohmann C.P., Maier M. Spectral domain OCT in central serous chorioretinopathy: description of retinal changes. Ophthalmologe 2012; 109(9): 879-887.

48. Егоров Е.А., Астахов Ю.С., Щуко А.Г. Национальное руководство (путеводитель) по глаукоме для поликлинических врачей. Москва, Столичный бизнес, 2008; 136 c.

49. Takayama K., Ooto S., Hangai M., et al. High-resolution imaging of retinal nerve fiber bundles in glaucoma using adaptive optics scanning laser ophthalmoscopy. Am J Ophthalmol 2013; 155(5): 870-881.

50. Rao A., Sihota R., Srinivasan G., et al. Prospective evaluation of optic nerve head by confocal scanning laser ophthalmoscopy after intraocular pressure control in adult glaucoma. Semin Ophthalmol 2013; 28(1): 13-18.

51. Lozano D.C., Twa M.D. Quantitative evaluation of factors influencing the repeatability of SD-OCT thickness measurements in the rat. Invest Ophthalmol Vis Sci 2012; 53(13): 8378-8385.

52. Sehi M., Bhardwaj N., Chung Y.S., et al. Еvaluation of baseline structural factors for predicting glaucomatous visual-field progression using optical coherence tomography, scanning laser polarimetry and confocal scanning laser ophthalmoscopy. Eye (Lond) 2012; 26(12): 1527-1535.

53. Nassiri N., Nilforushan N., Coleman A.L., et al. Longitudinal structure-function relationships with scanning laser ophthalmoscopy and standard achromatic perimetry. Arch Ophthalmol 2012; 130(7): 826-832.


Review

For citations:


Lebedev O.I., Kalizhnikova E.A., Yavorsky A.E. Top-list of errors in the management of glaucoma patients: ophthalmoscopy. National Journal glaucoma. 2014;13(1):35-44. (In Russ.)

Views: 753


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)