Preview

National Journal glaucoma

Advanced search

Role of eye hemoperfusion in the progress of primary open-angle glaucoma

Abstract

PURPOSE: To compare the diagnostic value of regional blood flow indicators and choroidal thickness with other morphological and functional parameters in early glaucoma detection. METHODS: 30 normal eyes and 32 eyes with preperimetric glaucoma were analyzed in the present study. The thickness of the ganglion cell complex (GCC), retinal nerve fiber layer (RNFL) and choroidal thickness (ChT) were measured using RTVue SD-OCT images. Perimetry - using Humphrey test (Carl Zeiss Meditec, Dublin, CA). Ocular blood flow velocity was measured by the color Doppler mapping (VOLUSON 730 ProSystem). Intraocular pressure (lOPcc) and corneal hysteresis (CH) were determined using Ocular Response Analyzer (ORA). As a measure of the parameter significance in early glaucoma detections, a value of the adjusted standardized statistic of the Wilcoxon-Mann-Whitney (z-value) and the area under the receiver operating characteristic (ROC) curve (AUC) were applied. RESULTS: The following parameters presented with the largest AUC score and highest z-values: the mean BFV in the vortex vein (AUC 1.0; z-value 5.35) and central retinal vein (0.85; 3.74), end diastolic BFV in the central retinal artery (0.73; 2.74) and temporal posterior ciliary arteries (0.71; 2.53), intraocular pressure (IOP) (0.74; -2.9), perimetric index Mean Deviation (MD) (0.72; 2.65), corneal hysteresis (CH) (0.69; 2.24), peripapillar ChT (0.69; -2.28), average GCC thickness (0.67; 2.05) and FLV (0.66; -1.86). CONCLUSIONS: The most informative clinical parameters in pre-perimetric glaucoma are blood flow indicators in vorticose veins, central retinal vein, central retinal artery and short posterior ciliary arteries, and the thickness of the peripapillary choroid, which indicates the role of hemoperfusion disorder in the progress of glaucoma and emphasizes the importance of ocular hemodynamic studies for early glaucoma detection.

About the Authors

N. I. Kurysheva
The Ophthalmological Center of the Federal Medical and Biological Agency, Clinical Hospital No. 86
Russian Federation


O. A. Parshunina
The Ophthalmological Center of the Federal Medical and Biological Agency, Clinical Hospital No. 86
Russian Federation


E. V. Maslova
The Ophthalmological Center of the Federal Medical and Biological Agency, Clinical Hospital No. 86
Russian Federation


E. O. Shatalova
The Ophthalmological Center of the Federal Medical and Biological Agency, Clinical Hospital No. 86
Russian Federation


T. N. Kiseleva
The Helmholtz Moscow Research Institute of Eye Diseases
Russian Federation


M. B. Lagutin
The Lomonosov Moscow State Institute,
Russian Federation


References

1. Anderson D.R. What happens to the optic disc and retina in glaucoma. Ophthalmology 1983; 90(7): 766-770. doi: 10.1016/ s0161-6420(83)34490-0.

2. Drance S.M., Douglas G.R., Wijsman K., Schulzer M., Britton R.J. Response of blood flow to warm and cold in normal and low-tension glaucoma patients. Am J Ophthalmol 1988; 105(1): 35-39. doi: 10.1016/0002-9394(88)90118-3.

3. Flammer J., Haefliger I.O., Orgul S., Resink T. Vascular dysregulation: a principal risk factor for glaucomatous damage? J Glaucoma 1999; 8: 212-219. doi: 10.1097/00061198199906000-00012.

4. Caprioli J., Coleman A.L. Blood Flow in Glaucoma Discussion. Blood pressure, perfusion pressure, and glaucoma. Am J Ophthalmol 2010; 149(5): 704-712. doi: 10.1016/j.ajo.2010.01.018.

5. Quigley H., Addicks E. et al. Optic nerve damage in human glaucoma. The sit of injury and susceptibility to damade. Arch Ophthalmol 1981; 99(4): 635-649. doi: 10.1001/archopht.1981.03930010635009.

6. Hayreh S.S. Ischemic optic neuropathies. Springer, 2011; 456 p. doi: 10.1007/978-3-642-11852-4.

7. Ehrlich J.R., Peterson J., Parlitsis G. et al. Peripapillary choroidal thickness in glaucoma measured with optical coherence tomography. Exp Eye Res 2011; 92(3): 189-194. doi: 10.1016/j.exer.2011.01.002.

8. Headache Classification Committee of the International Headache Society. Classification and diagnostic criteria for headache disorders, cranial neuralgias and facial pain Cephalalgia. 1988; 8(1): 96.

9. Курышева Н.И., Арджевнишвили Т.Д., Киселева Т.Н., Фомин А.В. Хориоидея при глаукоме: результаты исследования методом оптической когерентной томографии. Глаукома 2013; 4: 73-83

10. Weinreb R.N., Harris A., eds. Ocular blood flow in glaucoma: The 6th Consensus Report of the World Glaucoma Association. Amsterdam, the Netherlands: Kugler Publications; 2009.

11. Rusia D., Harris A., Pernic A. et al. Feasibility of creating a normative database of colour doppler imaging parameters in glaucomatous eyes and controls (Review). Br J Ophthalmol 2010; 95(9): 1193-1198. doi: 10.1136/bjo.2010.188219.

12. Курышева Н.И., Киселева Т.Н., Иртегова Е.Ю. Особенности венозного кровотока глаза при первичной открытоугольной глаукоме. Глаукома 2012; 4: 24-31.

13. Адамюк Е.В. К учению о внутриглазном кровообращении и давлении. Казань, 1867; 86 c

14. Судакевич Д.М. Архитектоника системы внутриглазного кровоснабжения. М.: Медицина, 1971; 111 c

15. Нестеров А.П. Глаукома. М.: Медицина, 1995; 256

16. Plange N., Kaup M., Weber A., Arend K., Remky A. Retrobulbar haemodynamics and morphometric optic disc analysis in primary open-angle glaucoma. Br J Ophthalmol 2006; 90(12): 1501-1504. doi: 10.1136/bjo.2006.099853.

17. Wolf S., Arend O., Sponsel W.E., Schulte K., Cantor L.B., Reim M. Retinal hemodynamics using scanning laser ophthalmoscopy and hemorheology in chronic open-angle glaucoma. Ophthalmology 1993; 100(10): 1561-1566. doi: 10.1016/s0161-6420(93)31444-2.

18. Abegão Pinto L., Vandewalle E., De Clerck E., Marques-Neves C., Stalmans I. Lack of spontaneous venous pulsation: possible risk indicator in normal tension glaucoma? Acta Ophthalmologica 2012; 91(6): 514-520. doi: 10.1111/j.1755-3768.2012.02472.x.

19. Meyer-Schwickerath R., Kleinwächter T., Papenfuв H-D., Firsching R. Central retinal venous outflow pressure. Graefe’s Arch Clin Exp Ophthalmol 1995; 233(12): 783-788. doi: 10.1007/bf00184090.

20. Morgan W.H., Hazelton M.L., Azar S.L., House P.H., Yu D.Y., Cringle S.J., Balaratnasingam C. Retinal venous pulsation in glaucoma and glaucoma suspects. Ophthalmology 2004; 111: 1489-1494. doi: 10.1016/j.ophtha.2003.12.053.

21. The Eye Disease Case-Control Study Group: Risk factors for central retinal vein occlusion. Arch Ophthalmol 1996; 114: 545554. doi: 10.1001/archopht.1996.01100130537006.

22. Balaratnasingam C., Morgan W.H., Hazelton M.L., House P.H., Barry C.J., Chan H., Cringle S.J., Yu D.Y. Value of retinal vein pulsation characteristics in predicting increased optic disc excavation. Br J Ophthalmol 2006; 91: 441-444. doi: 10.1136/bjo.2006.105338.

23. Morgan W.H., Balaratnasingam C., Hazelton M.L., House P.H., Cringle S.J., Yu D.Y. The force required to induce hemi- vein pulsation is associated with the site of maximal field loss in glaucoma. Invest Ophthalmol Vis Sci 2005; 46: 1307-1312. doi: 10.1167/iovs.04-1126.

24. Курышева Н.И., Иртегова Е.Ю., Ясаманова А.Н., Киселева Т.Н. Эндотелиальная дисфункция и тромбоцитарный гемостаз при первичной открытоугольной глаукоме. Глаукома 2015; 14(1): 27-36. [Kurysheva N.I., Irtegova E.Yu., Yasamanova A.N., Kiseleva T.N. Endothelial dysfunction and platelet hemostasis in primary open-angle glaucoma. Glaucoma 2015; 14(1): 27-36. (In Russ.)].

25. Fadini G.P., Pagano C., Baesso I. et al. Reduced endothelial progenitor cells and brachial artery flow-mediated dilation as evidence of endothelial dysfunction in ocular hypertension and primary open-angle glaucoma. Acta Ophthalmol 2010; 88: 135-141. doi: 10.1111/j.1755-3768.2009.01573.x.

26. Kang M.H., Balaratnasingam C., Yu P.K., Morgan W.H., McAllister I.L., Cringle S.J., Yu D.Y. Morphometric characteristics of central retinal artery and vein endothelium in the normal human optic nerve head. Invest Ophthalmol Vis Sci 2010; 52: 1359-1367. doi: 10.1167/iovs.10-6366.

27. Resch H., Karl K., Weigert G., Wolzt M., Hommer A., Schmetterer L., Garhofer G. Effect of dual endothelin receptor blockade on ocular blood flow in patients with glaucoma and healthy subjects. Invest Ophthalmol Vis Sci 2008; 50: 358-363. doi: 10.1167/iovs.08-2460.

28. Resch H., Garhofer G., Fuchsjager-Mayrl G., Hommer A., Schmetterer L. Endothelial dysfunction in glaucoma. Acta Ophthalmol 2009; 87: 4-12. doi: 10.1111/j.1755-3768.2007.01167.x.

29. Hirooka K., Fujiwara A., Shiragami C. et al. Relationship between progression of visual field damage and choroidal thickness in eyes with normal-tension glaucoma. Clin Exp Ophthalmol 2012; 40: 576-582. doi: 10.1111/j.1442-9071.2012.02762.x

30. Курышева Н.И., Киселева Т.Н., Ходак Н.А. Исследование биоэлектрической активности и регионарной гемодинамики при глаукоме. Клиническая офтальмология 2012; 3: 91-94.

31. Курышева Н.И., Киселева Т.Н., Рыжков П.К., Фомин А.В., Ходак Н.А., Арджевнишвили Т.Д. Влияние венозного кровотока глаза на состояние комплекса ганглиозных клеток сетчатки у больных первичной открытоугольной глаукомой. Офтальмология 2013; 1: 26-31

32. Луцевич Е.Э., Васильева А.Е., Макашова Н.В., Антонова Л.Н., Страздень Е.Ю. Состояние венозного краниального и брахиоцефального кровотока у больных ПОУГ. Глаукома 2013; 4: 30-42

33. Hwang J., Konduru R., Zhang X., Tan O., Francis B., Varma R., Sehi M., Greenfield D., Sadda S., Huang D. Relationship among visual field, blood flow, and neural structure measurements in glaucoma. Invest Ophthalmol Vis Sci 2012; 53: 30203026. doi: 10.1167/iovs.11-8552.

34. Leske M.C., Heijl A., Hussein M., Bengtsson B., Hyman L., Komaroff E. Early Manifest Glaucoma Trial Group: Factors for glaucoma progression and the effect of treatment (the Early Manifest Glaucoma Trial). Arch Ophthalmol 2004; 121: 48-56. doi: 10.1097/00055735-200404000-00008.

35. Luce D.A., Taylor D. Ocular response analyzer measures corneal biomechanical properties and IOP. Provides new indicators for corneal specialties and glaucoma management. Reichert Ophthalmic Instruments 2005; 12.

36. Medeiros F.A., Meira-Freitas D., Lisboa R., Kuang T.M., Zangwill L.M., Weinreb R.N. Corneal hysteresis as a risk factor for glaucoma progression: a prospective longitudinal study. Ophthalmology 2013; 120(8): 1533-1540. doi: 10.1016/j.ophtha.2013.01.032.

37. Jonas J., Wang N., Wang Y., You Q., Yang D., Xie X. Subfoveal choroidal thickness and cerebrospinal fluid pressure: the Beijing Eye Study 2011. Invest Ophthalmol Vis Sci 2014; 55(3): 1292-1298. doi: 10.1167/iovs.13-13351.

38. Kim M., Kim S., Kwon H., Koh H., Lee S.C. Association between choroidal thickness and ocular perfusion pressure in young, healthy subjects: enhanced depth imaging optical coherence tomography study. Invest Ophthalmol Vis Sci 2012; 53(12): 7710-7717. doi: 10.1167/iovs.12-10464.

39. Flugel C., Tamm E., Mayer B., Lütjen-Drecoll E. Species differences in choroidal vasodilative innervation: evidence for specific intrinsic nitregic and VIP-positive neurons in the human eye. Invest Ophthalmol Vis Sci 1994; 35(2): 592-599.

40. Duijm F., Berg T., Greve E. Choroidal haemodynamic in glaucoma. Br J Ophthalmol 1997; 81: 735-742. doi: 10.1136/ bjo.81.9.735.

41. Jampel H. Imaging the optic Nerve and posterior pole in glaucoma. Ophthalmology 2014; 121(11): 2079-2080. doi: 10.1016/j.ophtha.2014.07.011.


Review

For citations:


Kurysheva N.I., Parshunina O.A., Maslova E.V., Shatalova E.O., Kiseleva T.N., Lagutin M.B. Role of eye hemoperfusion in the progress of primary open-angle glaucoma. National Journal glaucoma. 2015;14(3):19-29. (In Russ.)

Views: 874


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)