Preview

Национальный журнал глаукома

Расширенный поиск

Современные методы функциональной диагностики и мониторинга глаукомы. Часть 2. Диагностика структурных повреждений сетчатки и зрительного нерва

Полный текст:

Аннотация

Глаукома - хроническая оптическая нейропатия, характеризующаяся потерей ганглиозных клеток с развитием специфических изменений диска зрительного нерва (ДЗН) и слоя нервных волокон сетчатки (СНВС). Раннее выявление заболевания играет важную роль в предотвращении развития структурных нарушений и необратимой потери зрения. Диагностика глаукомы основана на оценке сохранности структур зрительного нерва и зрительных функций. Результаты клинического осмотра ДЗН и СНВС носят субъективный характер и сильно варьируют. В связи с этим исследования последних лет были направлены на разработку дополнительных объективных методов диагностики глаукомы. Была изучена возможность применения конфокальной сканирующей лазерной офтальмоскопии, сканирующей лазерной периметрии и оптической когерентной томографии для оценки состояния ДЗН. С целью обеспечения раннего выявления дефектов полей зрения в настоящее время рассматриваются варианты замены стандартной автоматической периметрии (standard automated perimetry, SAP) на селективную, которая включает в себя коротковолновую автоматическую периметрию (short-wavelength automated perimetry, SWAP) и периметрию с иллюзией удвоения пространственной частоты (frequency-doubling technology perimetry, FDT). Статья представляет собой обзор современных методов диагностики глаукомы в контексте их применения в клинической практике.

Об авторах

В. П. Еричев
ФГБНУ «Научно-исследовательский институт глазных болезней»
Россия


С. Ю. Петров
ФГБНУ «Научно-исследовательский институт глазных болезней»
Россия


А. С. Макарова
ФГБНУ «Научно-исследовательский институт глазных болезней»
Россия


И. В. Козлова
ФГБНУ «Научно-исследовательский институт глазных болезней»
Россия


В. С. Рещикова
ФГБНУ «Научно-исследовательский институт глазных болезней»
Россия


Список литературы

1. Gordon M.O., Beiser J.A., Brandt J.D., Heuer D.K., Higginbotham E.J., Johnson C.A. et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 2002; 120(6): 714-720; discussion 829-730.

2. Lin S.C., Singh K., Jampel H.D., Hodapp E.A., Smith S.D., Francis B.A. et al. Optic nerve head and retinal nerve fiber layer analysis: a report by the American Academy of Ophthalmology. Ophthalmology 2007; 114(10): 1937-1949. 10.1016/j.ophtha.2007.07.005.

3. Medeiros F.A., Zangwill L.M., Bowd C., Sample P.A., Weinreb R.N. Use of progressive glaucomatous optic disk change as the reference standard for evaluation of diagnostic tests in glaucoma. Am J Ophthalmol 2005; 139(6): 1010-1018. 10.1016/j.ajo.2005.01.003.

4. Fingeret M., Medeiros F.A., Susanna R. Jr., Weinreb R.N. Five rules to evaluate the optic disc and retinal nerve fiber layer for glaucoma. Optometry 2005; 76(11): 661-668. 10.1016/j.optm.2005.08.029.

5. Tielsch J.M., Katz J., Quigley H.A., Miller N.R., Sommer A. Intraobserver and interobserver agreement in measurement of optic disc characteristics. Ophthalmology 1988; 95(3): 350-356.

6. Varma R., Steinmann W.C., Scott I.U. Expert agreement in evaluating the optic disc for glaucoma. Ophthalmology 1992; 99(2): 215-221.

7. Gaasterland D.E., Blackwell B., Dally L.G., Caprioli J., Katz L.J., Ederer F. et al. The Advanced Glaucoma Intervention Study (AGIS): 10. Variability among academic glaucoma subspecialists in assessing optic disc notching. Transactions Am Ophthalmol Soc 2001; 99: 177-184; discussion 184-175.

8. Parrish R.K., 2nd, Schiffman J.C., Feuer W.J., Anderson D.R., Budenz D.L., Wells-Albornoz M.C. et al. Test-retest reproducibility of optic disk deterioration detected from stereophotographs by masked graders. Am J Ophthalmol 2005; 140(4): 762-764. 10.1016/j.ajo.2005.04.044.

9. Zeyen T., Miglior S., Pfeiffer N., Cunha-Vaz J., Adamsons I., European Glaucoma Prevention Study G. Reproducibility of evaluation of optic disc change for glaucoma with stereo optic disc photographs. Ophthalmology 2003; 110(2): 340-344.

10. Deleon-Ortega J.E., Arthur S.N., McGwin G., Jr., Xie A., Monheit B.E., Girkin C.A. Discrimination between glaucomatous and nonglaucomatous eyes using quantitative imaging devices and subjective optic nerve head assessment. Invest Ophthalmol Vis Sci 2006; 47(8): 3374-3380. 10.1167/iovs.05-1239.

11. Girkin C.A., DeLeon-Ortega J.E., Xie A., McGwin G., Arthur S.N., Monheit B.E. Comparison of the Moorfields classification using confocal scanning laser ophthalmoscopy and subjective optic disc classification in detecting glaucoma in blacks and whites. Ophthalmology 2006; 113(12): 2144-2149. 10.1016/j.ophtha.2006.06.035.

12. Henderer J.D., Liu C., Kesen M., Altangerel U., Bayer A., Steinmann W.C. et al. Reliability of the disk damage likelihood scale. Am J Ophthalmol 2003; 135(1): 44-48.

13. Weinreb R.N., Bowd C., Zangwill L.M. Glaucoma detection using scanning laser polarimetry with variable corneal polarization compensation. Arch Ophthalmol 2003; 121(2): 218-224.

14. Miglior S., Guareschi M., Albe E., Gomarasca S., Vavassori M., Orzalesi N. Detection of glaucomatous visual field changes using the Moorfields regression analysis of the Heidelberg retina tomograph. Am J Ophthalmol 2003; 136(1): 26-33.

15. Wollstein G., Garway-Heath D.F., Hitchings R.A. Identification of early glaucoma cases with the scanning laser ophthalmoscope. Ophthalmology 1998; 105(8): 1557-1563. 10.1016/S0161-6420(98)98047-2.

16. Miglior S., Guareschi M., Romanazzi F., Albe E., Torri V., Orzalesi N. The impact of definition of primary open-angle glaucoma on the cross-sectional assessment of diagnostic validity of Heidelberg retinal tomography. Am J Ophthalmol 2005; 139(5): 878-887. 10.1016/j.ajo.2005.01.013.

17. Ford B.A., Artes P.H., McCormick T.A., Nicolela M.T., LeBlanc R.P., Chauhan B.C. Comparison of data analysis tools for detection of glaucoma with the Heidelberg Retina Tomograph. Ophthalmology 2003; 110(6): 1145-1150. 10.1016/S0161-6420(03)00230-6.

18. Mardin C.Y., Hothorn T., Peters A., Junemann A.G., Nguyen N.X., Lausen B. New glaucoma classification method based on standard Heidelberg Retina Tomograph parameters by bagging classification trees. J Glaucoma 2003; 12(4): 340-346.

19. Zangwill L.M., Chan K., Bowd C., Hao J., Lee T.W., Weinreb R.N. et al. Heidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers. Invest Ophthalmol Vis Sci 2004; 45(9): 3144-3151. 10.1167/iovs.04-0202.

20. Zangwill L.M., Weinreb R.N., Beiser J.A., Berry C.C., Cioffi G.A., Coleman A.L. et al. Baseline topographic optic disc measurements are associated with the development of primary open-angle glaucoma: the Confocal Scanning Laser Ophthalmoscopy Ancillary Study to the Ocular Hypertension Treatment Study. Arch Ophthalmol 2005; 123(9): 1188-1197. 10.1001/archopht.123.9.1188.

21. Danesh-Meyer H.V., Gaskin B.J., Jayusundera T., Donaldson M., Gamble G.D. Comparison of disc damage likelihood scale, cup to disc ratio, and Heidelberg retina tomograph in the diagnosis of glaucoma. Brit J Ophthalmol 2006; 90(4): 437-441. 10.1136/bjo.2005.077131.

22. Medeiros F.A., Zangwill L.M., Bowd C., Vasile C., Sample P.A., Weinreb R.N. Agreement between stereophotographic and confocal scanning laser ophthalmoscopy measurements of cup/disc ratio: effect on a predictive model for glaucoma development. J Glaucoma 2007; 16(2): 209-214. 10.1097/IJG.0b013e31802d695c.

23. Reus N.J., de Graaf M., Lemij H.G. Accuracy of GDx VCC, HRT I, and clinical assessment of stereoscopic optic nerve head photographs for diagnosing glaucoma. Brit J Ophthalmol 2007; 91(3): 313-318. 10.1136/bjo.2006.096586.

24. Swindale N.V., Stjepanovic G., Chin A., Mikelberg F.S. Automated analysis of normal and glaucomatous optic nerve head topography images. Invest Ophthalmol Vis Sci 2000; 41(7): 1730-1742.

25. Burgansky-Eliash Z., Wollstein G., Patel A., Bilonick R.A., Ishikawa H., Kagemann L. et al. Glaucoma detection with matrix and standard achromatic perimetry. Brit J Ophthalmol 2007; 91(7): 933-938. 10.1136/bjo.2006.110437.

26. Harizman N., Zelefsky J.R., Ilitchev E., Tello C., Ritch R., Liebmann J.M. Detection of glaucoma using operator-dependent versus operator-independent classification in the Heidelberg retinal tomograph-III. Brit J Ophthalmol 2006; 90(11): 1390-1392. 10.1136/bjo.2006.098111.

27. Zangwill L.M., Jain S., Racette L., Ernstrom K.B., Bowd C., Medeiros F.A. et al. The effect of disc size and severity of disease on the diagnostic accuracy of the Heidelberg Retina Tomograph Glaucoma Probability Score. Invest Ophthalmol Vis Sci 2007; 48(6): 2653-2660. 10.1167/iovs.06-1314.

28. Coops A., Henson D.B., Kwartz A.J., Artes P.H. Automated analysis of heidelberg retina tomograph optic disc images by glaucoma probability score. Invest Ophthalmol Vis Sci 2006; 47(12): 5348-5355. 10.1167/iovs.06-0579.

29. Artes P.H., Chauhan B.C. Longitudinal changes in the visual field and optic disc in glaucoma. Progress in Retinal and Eye Res 2005; 24(3): 333-354. 10.1016/j.preteyeres.2004.10.002.

30. Chauhan B.C., Blanchard J.W., Hamilton D.C., LeBlanc R.P. Technique for detecting serial topographic changes in the optic disc and peripapillary retina using scanning laser tomography. Invest Ophthalmol Vis Sci 2000; 41(3): 775-782.

31. Quigley H.A., Katz J., Derick R.J., Gilbert D., Sommer A. An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology 1992; 99(1): 19-28.

32. Sehi M., Guaqueta D.C., Feuer W.J., Greenfield D.S., Advanced Imaging in Glaucoma Study G. Scanning laser polarimetry with variable and enhanced corneal compensation in normal and glaucomatous eyes. Am J Ophthalmol 2007; 143(2): 272-279. 10.1016/j.ajo.2006.09.049.

33. Bowd C., Zangwill L.M., Medeiros F.A., Tavares I.M., Hoffmann E.M., Bourne R.R. et al. Structure-function relationships using confocal scanning laser ophthalmoscopy, optical coherence tomography, and scanning laser polarimetry. Invest Ophthalmol Vis Sci 2006; 47(7): 2889-2895. 10.1167/iovs.05-1489.

34. Schlottmann P.G., De Cilla S., Greenfield D.S., Caprioli J., Garway-Heath D.F. Relationship between visual field sensitivity and retinal nerve fiber layer thickness as measured by scanning laser polarimetry. Invest Ophthalmol Vis Sci 2004; 45(6): 1823-1829.

35. Brusini P., Salvetat M.L., Parisi L., Zeppieri M., Tosoni C. Discrimination between normal and early glaucomatous eyes with scanning laser polarimeter with fixed and variable corneal compensator settings. Eur J Ophthalmol 2005; 15(4): 468-476.

36. Bowd C., Medeiros F.A., Zhang Z., Zangwill L.M., Hao J., Lee T.W. et al. Relevance vector machine and support vector machine classifier analysis of scanning laser polarimetry retinal nerve fiber layer measurements. Invest Ophthalmol Vis Sci 2005; 46(4): 1322-1329. 10.1167/iovs.04-1122.

37. Essock E.A., Zheng Y., Gunvant P. Analysis of GDx-VCC polari-metry data by Wavelet-Fourier analysis across glaucoma stages. Invest Ophthalmol Vis Sci 2005; 46(8): 2838-2847. 10.1167/iovs.04-1156.

38. Medeiros F.A., Zangwill L.M., Bowd C., Bernd A.S., Weinreb R.N. Fourier analysis of scanning laser polarimetry measurements with variable corneal compensation in glaucoma. Invest Ophthalmol Vis Sci 2003; 44(6): 2606-2612.

39. Medeiros F.A., Zangwill L.M., Bowd C., Mohammadi K., Weinreb R.N. Comparison of scanning laser polarimetry using variable corneal compensation and retinal nerve fiber layer photography for detection of glaucoma. Arch Ophthalmol 2004; 122(5): 698-704. 10.1001/archopht.122.5.698.

40. Mohammadi K., Bowd C., Weinreb R.N., Medeiros F.A., Sample P.A., Zangwill L.M. Retinal nerve fiber layer thickness measurements with scanning laser polarimetry predict glaucomatous visual field loss. Am J Ophthalmol 2004; 138(4): 592-601. 10.1016/j.ajo.2004.05.072.

41. Horn F.K., Brenning A., Junemann A.G., Lausen B. Glaucoma detection with frequency doubling perimetry and short-wavelength perimetry. J Glaucoma 2007; 16(4): 363-371. 10.1097/IJG.0b013e318032e4c2.

42. Bagga H., Greenfield D.S., Feuer W.J. Quantitative assessment of atypical birefringence images using scanning laser polarimetry with variable corneal compensation. Am J Ophthalmol 2005; 139(3): 437-446. 10.1016/j.ajo.2004.10.019.

43. Bowd C., Tavares I.M., Medeiros F.A., Zangwill L.M., Sample P.A., Weinreb R.N. Retinal nerve fiber layer thickness and visual sensitivity using scanning laser polarimetry with variable and enhanced corneal compensation. Ophthalmology 2007; 114(7): 1259-1265. 10.1016/j.ophtha.2006.10.020.

44. Medeiros F.A., Bowd C., Zangwill L.M., Patel C., Weinreb R.N. Detection of glaucoma using scanning laser polarimetry with enhanced corneal compensation. Invest Ophthalmol Vis Sci 2007; 48(7): 3146-3153. 10.1167/iovs.06-1139.

45. Huang D., Swanson E.A., Lin C.P., Schuman J.S., Stinson W.G., Chang W. et al. Optical coherence tomography. Science 1991; 254(5035): 1178-1181.

46. Paunescu L.A., Schuman J.S., Price L.L., Stark P.C., Beaton S., Ishikawa H. et al. Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using StratusOCT. Invest Ophthalmol Vis Sci 2004; 45(6): 1716-1724.

47. Schuman J.S., Pedut-Kloizman T., Hertzmark E., Hee M.R., Wilkins J.R., Coker J.G. et al. Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology 1996; 103(11): 1889-1898.

48. Pieroth L., Schuman J.S., Hertzmark E., Hee M.R., Wilkins J.R., Coker J. et al. Evaluation of focal defects of the nerve fiber layer using optical coherence tomography. Ophthalmology 1999; 106(3): 570-579.

49. Schuman J.S., Hee M.R., Puliafito C.A., Wong C., Pedut-Kloizman T., Lin C.P. et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol 1995; 113(5): 586-596.

50. Williams Z.Y., Schuman J.S., Gamell L., Nemi A., Hertzmark E., Fujimoto J.G. et al. Optical coherence tomography measurement of nerve fiber layer thickness and the likelihood of a visual field defect. Am J Ophthalmol 2002; 134(4): 538-546.

51. Bourne R.R., Medeiros F.A., Bowd C., Jahanbakhsh K., Zangwill L.M., Weinreb R.N. Comparability of retinal nerve fiber layer thickness measurements of optical coherence tomography instruments. Invest Ophthalmol Vis Sci 2005; 46(4): 1280-1285. 10.1167/iovs.04-1000.

52. Budenz D.L., Michael A., Chang R.T., McSoley J., Katz J. Sensitivity and specificity of the StratusOCT for perimetric glaucoma. Ophthalmology 2005; 112(1): 3-9. 10.1016/j.ophtha.2004.06.039.

53. Kanamori A., Escano M.F., Eno A., Nakamura M., Maeda H., Seya R. et al. Evaluation of the effect of aging on retinal nerve fiber layer thickness measured by optical coherence tomography. International J Ophthalmol. Zeitschrift fur Augenheilkunde 2003; 217(4): 273-278. 70634.

54. Leung C.K., Chan W.M., Hui Y.L., Yung W.H., Woo J., Tsang M.K. et al. Analysis of retinal nerve fiber layer and optic nerve head in glaucoma with different reference plane offsets, using optical coherence tomography. Invest Ophthalmol Vis Sci 2005; 46(3): 891-899. 10.1167/iovs.04-1107.

55. Nouri-Mahdavi K., Hoffman D., Tannenbaum D.P., Law S.K., Caprioli J. Identifying early glaucoma with optical coherence tomography. Am J Ophthalmol 2004; 137(2): 228-235. 10.1016/j.ajo.2003.09.004.

56. Wollstein G., Ishikawa H., Wang J., Beaton S.A., Schuman J.S. Comparison of three optical coherence tomography scanning areas for detection of glaucomatous damage. Am J Ophthalmol 2005; 139(1): 39-43. 10.1016/j.ajo.2004.08.036.

57. Wollstein G., Schuman J.S., Price L.L., Aydin A., Beaton S.A., Stark P.C. et al. Optical coherence tomography (OCT) macular and peripapillary retinal nerve fiber layer measurements and automated visual fields. Am J Ophthalmol 2004; 138(2): 218-225. 10.1016/j.ajo.2004.03.019.

58. Leung C.K., Chan W.M., Yung W.H., Ng A.C., Woo J., Tsang M.K. et al. Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Ophthalmology 2005; 112(3): 391-400. 10.1016/j.ophtha.2004.10.020.

59. Manassakorn A., Nouri-Mahdavi K., Caprioli J. Comparison of retinal nerve fiber layer thickness and optic disk algorithms with optical coherence tomography to detect glaucoma. Am J Ophthalmol 2006; 141(1): 105-115. 10.1016/j.ajo.2005.08.023.

60. Schuman J.S., Wollstein G., Farra T., Hertzmark E., Aydin A., Fujimoto J.G. et al. Comparison of optic nerve head measurements obtained by optical coherence tomography and confo-cal scanning laser ophthalmoscopy. Am J Ophthalmol 2003; 135(4): 504-512.

61. Guedes V., Schuman J.S., Hertzmark E., Wollstein G., Correnti A., Mancini R. et al. Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology 2003; 110(1): 177-189.

62. Burgansky-Eliash Z., Wollstein G., Chu T., Ramsey J.D., Glymour C., Noecker R.J. et al. Optical coherence tomography machine learning classifiers for glaucoma detection: a preliminary study. Invest Ophthalmol Vis Sci 2005; 46(11): 4147-4152. 10.1167/iovs.05-0366.

63. Ishikawa H., Stein D.M., Wollstein G., Beaton S., Fujimoto J.G., Schuman J.S. Macular segmentation with optical coherence tomography. Invest Ophthalmol Vis Sci 2005; 46(6): 2012-2017. 10.1167/iovs.04-0335.

64. Wollstein G., Schuman J.S., Price L.L., Aydin A., Stark P.C., Hertzmark E. et al. Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Arch Ophthalmol 2005; 123(4): 464-470. 10.1001/archopht.123.4.464.

65. Drexler W., Morgner U., Ghanta R.K., Kartner F.X., Schuman J.S., Fujimoto J.G. Ultrahigh-resolution ophthalmic optical coherence tomography. Nature medicine 2001; 7(4): 502-507. 10.1038/86589.

66. Gabriele M.L., Ishikawa H., Wollstein G., Bilonick R.A., Kagemann L., Wojtkowski M. et al. Peripapillary nerve fiber layer thickness profile determined with high speed, ultrahigh resolution optical coherence tomography high-density scanning. Invest Ophthalmol Vis Sci 2007; 48(7): 3154-3160. 10.1167/iovs.06-1416.

67. Wollstein G., Paunescu L.A., Ko T.H., Fujimoto J.G., Kowale-vicz A., Hartl I. et al. Ultrahigh-resolution optical coherence tomography in glaucoma. Ophthalmology 2005; 112(2): 229-237. 10.1016/j.ophtha.2004.08.021.

68. Essock E.A., Sinai M.J., Bowd C., Zangwill L.M., Weinreb R.N. Fourier analysis of optical coherence tomography and scanning laser polarimetry retinal nerve fiber layer measurements in the diagnosis of glaucoma. Arch Ophthalmol 2003; 121(9): 1238-1245. 10.1001/archopht.121.9.1238.

69. Leung C.K., Chan W.M., Chong K.K., Yung W.H., Tang K.T., Woo J. et al. Comparative study of retinal nerve fiber layer measurement by StratusOCT and GDx VCC, I: correlation analysis in glaucoma. Invest Ophthalmol Vis Sci 2005; 46(9): 3214-3220. 10.1167/iovs.05-0294.

70. Leung C.K., Chong K.K., Chan W.M., Yiu C.K., Tso M.Y., Woo J. et al. Comparative study of retinal nerve fiber layer measurement by StratusOCT and GDx VCC, II: structure/function regression analysis in glaucoma. Invest Ophthalmol Vis Sci 2005; 46(10): 3702-3711. 10.1167/iovs.05-0490.

71. Hoffmann E.M., Bowd C., Medeiros F.A., Boden C., Grus F.H., Bourne R.R. et al. Agreement among 3 optical imaging methods for the assessment of optic disc topography. Ophthalmology 2005; 112(12): 2149-2156. 10.1016/j.ophtha.2005.07.003.


Для цитирования:


Еричев В.П., Петров С.Ю., Макарова А.С., Козлова И.В., Рещикова В.С. Современные методы функциональной диагностики и мониторинга глаукомы. Часть 2. Диагностика структурных повреждений сетчатки и зрительного нерва. Национальный журнал глаукома. 2015;14(3):72-79.

For citation:


Erichev V.P., Petrov S.Y., Kozlova I.V., Makarova A.S., Reshchikova V.S. Modern methods of functional diagnostics and monitoring of glaucoma. Part 2. Diagnosis of structural damage of the retina and optic nerve. National Journal glaucoma. 2015;14(3):72-79. (In Russ.)

Просмотров: 174


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)