Preview

National Journal glaucoma

Advanced search

Modern methods of functional diagnostics and monitoring of glaucoma. Part 3. The role of the morphological and functional relationships in the early detection and monitoring of glaucoma

Abstract

Glaucoma is a chronic optic neuropathy, characterized by ganglion cell loss and specific changes in the optic nerve head (ONH) and retinal nerve fiber layer (RNFL). Early glaucoma detection plays an important role in preventing permanent structural damage development and irreversible vision loss. Glaucoma diagnostics is based on examination of structural damage to the optic nerve and visual functions evaluation. The results of ONH and RNFL clinical evaluation are subjective and can vary to a great extent. As a result, much recent research has been devoted to developing additional objective diagnostic methods, such as the use of confocal scanning laser ophthalmoscopy, scanning laser polarimetry and optical coherence tomography for evaluating the OHN status. In order to provide early detection of visual field defects some researchers consider the possibility of replacing standard automated perimetry (SAP) with the selective automated perimetry, that includes the short-wavelength automated perimetry (SWAP) and frequency-doubling technology perimetry (FDT). This article presents a review of modern methods available for glaucoma diagnostics with emphasis on their clinical use.

About the Authors

V. P. Erichev
The Scientific Research Institute of Eye Diseases
Russian Federation


S. Yu. Petrov
The Scientific Research Institute of Eye Diseases
Russian Federation


I. V. Kozlova
The Scientific Research Institute of Eye Diseases
Russian Federation


A. S. Makarova
The Scientific Research Institute of Eye Diseases
Russian Federation


V. S. Reshchikova
The Scientific Research Institute of Eye Diseases
Russian Federation


References

1. Bowd C., Zangwill L.M., Berry C.C., Blumenthal E.Z., Vasile C., Sanchez-Galeana C. et al. Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function. Invest Ophthalmol Vis Sci 2001; 42(9): 1993-2003.

2. Mardin C.Y., Peters A., Horn F., Junemann A.G., Lausen B. Improving glaucoma diagnosis by the combination of perimetry and HRT measurements. J Glaucoma 2006; 15(4): 299-305. 10.1097/01.ijg.0000212232.03664.ee.

3. Shah N.N., Bowd C., Medeiros F.A., Weinreb R.N., Sample P.A., Hoffmann E.M. et al. Combining structural and functional testing for detection of glaucoma. Ophthalmology 2006; 113(9): 1593-1602. 10.1016/j.ophtha.2006.06.004.

4. Goetghebeur E., Liinev J., Boelaert M., Van der Stuyft P. Diagnostic test analyses in search of their gold standard: latent class analyses with random effects. Statistical Methods In Medical Research 2000; 9(3): 231-248.

5. Hong S., Ahn H., Ha S.J., Yeom H.Y., Seong G.J., Hong Y.J. Early glaucoma detection using the Humphrey Matrix Perimeter, GDx VCC, Stratus OCT, and retinal nerve fiber layer photography. Ophthalmology 2007; 114(2): 210-215. 10.1016/j.ophtha.2006.09.021.

6. Mardin C.Y., Hothorn T., Peters A., Junemann A.G., Nguyen N.X., Lausen B. New glaucoma classification method based on standard Heidelberg Retina Tomograph parameters by bagging classification trees. J Glaucoma 2003; 12(4): 340-346.

7. Artes P.H., Chauhan B.C. Longitudinal changes in the visual field and optic disc in glaucoma. Progress in Retinal and Eye Research 2005; 24(3): 333-354. 10.1016/j.preteyeres.2004.10.002.

8. Heijl A., Leske M.C., Bengtsson B., Bengtsson B., Hussein M., Early Manifest Glaucoma Trial G. Measuring visual field progression in the Early Manifest Glaucoma Trial. Acta Ophthalmologica Scandinavica 2003; 81(3): 286-293.

9. Kass M.A., Heuer D.K., Higginbotham E.J., Johnson C.A., Keltner J.L., Miller J.P. et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002; 120(6): 701-713; discussion 829-730.

10. Miglior S., Zeyen T., Pfeiffer N., Cunha-Vaz J., Torri V., Adamsons I. et al. Results of the European Glaucoma Prevention Study. Ophthalmology 2005; 112(3): 366-375. 10.1016/j.ophtha.2004.11.030.

11. Patterson A.J., Garway-Heath D.F., Crabb D.P. Improving the repeatability of topographic height measurements in confocal scanning laser imaging using maximum-likelihood deconvolution. Invest Ophthalmol Vis Sci 2006; 47(10): 4415-4421. 10.1167/iovs.06-0191.

12. Strouthidis N.G., Vinciotti V., Tucker A.J., Gardiner S.K., Crabb D.P., Garway-Heath D.F. Structure and function in glaucoma: The relationship between a functional visual field map and an anatomic retinal map. Invest Ophthalmol Vis Sci 2006; 47(12): 5356-5362. 10.1167/ iovs.05-1660.

13. Wollstein G., Schuman J.S., Price L.L., Aydin A., Stark P.C., Hertzmark E. et al. Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Arch Ophthalmol 2005; 123(4): 464-470. 10.1001/archopht.123.4.464.

14. Chauhan B.C., McCormick T.A., Nicolela M.T., LeBlanc R.P. Optic disc and visual field changes in a prospective longitudinal study of patients with glaucoma: comparison of scanning laser tomography with conventional perimetry and optic disc photography. Arch Ophthalmol 2001; 119(10): 1492-1499.

15. Girkin C.A., Emdadi A., Sample P.A., Blumenthal E.Z., Lee A.C., Zangwill L.M. et al. Short-wavelength automated perimetry and standard perimetry in the detection of progressive optic disc cupping. Arch Ophthalmol 2000; 118(9): 1231-1236.

16. Kamal D.S., Garway-Heath D.F., Hitchings R.A., Fitzke F.W. Use of sequential Heidelberg retina tomograph images to identify changes at the optic disc in ocular hypertensive patients at risk of developing glaucoma. Brit J Ophthalmol 2000; 84(9): 993-998.

17. Quigley H.A., Katz J., Derick R.J., Gilbert D., Sommer A. An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology 1992; 99(1): 19-28.

18. Hood D.C., Anderson S.C., Wall M., Kardon R.H. Structure versus function in glaucoma: an application of a linear model. Invest Ophthalmol Vis Sci 2007; 48(8): 3662-3668. 10.1167/iovs.06-1401.

19. Hood D.C., Kardon R.H. A framework for comparing structural and functional measures of glaucomatous damage. Progress in Retinal and Eye Research 2007; 26(6): 688-710. 10.1016/j.preteyeres.2007.08.001.

20. Kymes S.M., Kass M.A., Anderson D.R., Miller J.P., Gordon M.O., Ocular Hypertension Treatment Study G. Management of ocular hypertension: a cost-effectiveness approach from the Ocular Hypertension Treatment Study. Am J Ophthalmol 2006; 141(6): 997-1008. 10.1016/j.ajo.2006.01.019.

21. Gordon M.O., Beiser J.A., Brandt J.D., Heuer D.K., Higginbotham E.J., Johnson C.A. et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 2002; 120(6): 714-720; discussion 829-730.

22. Ocular Hypertension Treatment Study G., European Glaucoma Prevention Study G., Gordon M.O., Torri V., Miglior S., Beiser J.A. et al. Validated prediction model for the development of primary open-angle glaucoma in individuals with ocular hypertension. Ophthalmology 2007; 114(1): 10-19. 10.1016/j.ophtha.2006.08.031.

23. Medeiros F.A., Zangwill L.M., Bowd C., Vasile C., Sample P.A., Weinreb R.N. Agreement between stereophotographic and confocal scanning laser ophthalmoscopy measurements of cup/disc ratio: effect on a predictive model for glaucoma development. J Glaucoma 2007; 16(2): 209-214. 10.1097/IJG.0b013e31802d695c.

24. Lalezary M., Medeiros F.A., Weinreb R.N., Bowd C., Sample P.A., Tavares I.M. et al. Baseline optical coherence tomography predicts the development of glaucomatous change in glaucoma suspects. Am J Ophthalmol 2006; 142(4): 576-582. 10.1016/j.ajo.2006.05.004.

25. Alencar L.M., Bowd C., Weinreb R.N., Zangwill L.M., Sample P.A., Medeiros F.A. Comparison of HRT-3 glaucoma probability score and subjective stereophotograph assessment for prediction of progression in glaucoma. Invest Ophthalmol Vis Sci 2008; 49(5): 1898-1906. 10.1167/iovs.07-0111.

26. Bowd C., Zangwill L.M., Medeiros F.A., Hao J., Chan K., Lee T.W. et al. Confocal scanning laser ophthalmoscopy classifiers and stereophotograph evaluation for prediction of visual field abnormalities in glaucoma-suspect eyes. Invest Ophthalmol Vis Sci 2004; 45(7): 2255-2262.

27. Zangwill L.M., Weinreb R.N., Beiser J.A., Berry C.C., Cioffi G.A., Coleman A.L. et al. Baseline topographic optic disc measurements are associated with the development of primary open-angle glaucoma: the Confocal Scanning Laser Ophthalmoscopy Ancillary Study to the Ocular Hypertension Treatment Study. Arch Ophthalmol 2005; 123(9): 1188-1197. 10.1001/archopht.123.9.1188.

28. Essock E.A., Gunvant P., Zheng Y., Garway-Heath D.F., Kotecha A., Spratt A. Predicting visual field loss in ocular hypertensive patients using wavelet-fourier analysis of GDx scanning laser polarimetry. Optometry Vis Sci: official publication of the American Academy of Optometry 2007; 84(5): 380-387. 10.1097/OPX.0b013e318058a0de.

29. Mohammadi K., Bowd C., Weinreb R.N., Medeiros F.A., Sample P.A., Zangwill L.M. Retinal nerve fiber layer thickness measurements with scanning laser polarimetry predict glaucomatous visual field loss. Am J Ophthalmol 2004; 138(4): 592-601. 10.1016/j. ajo.2004.05.072.

30. Medeiros F.A., Sample P.A., Weinreb R.N. Frequency doubling technology perimetry abnormalities as predictors of glaucomatous visual field loss. Am J Ophthalmol 2004; 137(5): 863-871. 10.1016/j. ajo.2003.12.009.


Review

For citations:


Erichev V.P., Petrov S.Yu., Kozlova I.V., Makarova A.S., Reshchikova V.S. Modern methods of functional diagnostics and monitoring of glaucoma. Part 3. The role of the morphological and functional relationships in the early detection and monitoring of glaucoma. National Journal glaucoma. 2016;15(2):96-101. (In Russ.)

Views: 1166


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)