Preview

National Journal glaucoma

Advanced search

OCT-angiography (OCT-A) in early glaucoma detection and monitoring

Abstract

PURPOSE: To evaluate the role of optical coherence tomography with angiography (OCT-A) in early glaucoma detection and its monitoring. METHODS: 48 eyes of patients with early stage and 47 eyes of patients with advanced primary open angle glaucoma (POAG) and 42 eyes of age-matched healthy subjects were examined by means of SD-OCT-А (RtVue xR Avanti with the AngioVue software). Retinal Thickness and Angio Flow Density (AFD) were measured. AFD Disc and Peripapillary Flow Density were measured in ONH and 750-pm-wide elliptical annulus extending from the optic disc boundary. AFD retina was evaluated in macula (area bounded by a circle with a 3 mm diameter) including fovea and parafovea regions (superficial and deep) of the inner retinal layers. Retrobulbar blood flow parameters, including ophthalmic artery (OA), central retinal artery (CRA), posterior short ciliary artery (PCA), central retinal vein (CRV) and vortex vein (VV) were measured by CDI. The average thickness of the retinal ganglion cells complex (avg. GCC), retinal nerve fiber layer (avg. RNFL) and choroid (Tx), and the focal loss volume (FLV) and global loss volume (GLV) of GCC were measured using SD-OCT. Visual fields were evaluated using Humphrey Visual Field Analyzer 3 («Carl Zeiss Meditec», Dublin, CA). Corneal-compensated IOP (lOPcc) and corneal hysteresis (CH) were determined using Ocular Response Analyzer (ORA). Mean ocular perfusion pressure (MOPP) was calculated using IOP and mean arterial blood pressure (MAP) measurements, according to the following formula: MOPP = ([2/3 diastolic BP + 1/3 systolic BP] « 2/3 - IOP). Statistical analysis was performed using SPSS version 21 and MASS library of language R. The value of each diagnostic indicator (z-value) was calculated using the Wilcoxon-Mann-Whitney test and the area under the receiver operating characteristic curve (AUC) was used for discrimination of studied groups. RESULTS: Despite the significant decrease of all structural parameters and variables of retrobulbar blood flow in early POAG the following indicators had the largest AUC and diagnostic value (z-value) to discriminate the early glaucoma from normal eyes: AFD Retina Superficial Whole En Face (z=3.86, p<0.0001; AUC 0.8 (0.69-0.90)), and macular thickness in the inferior sector (z=3.86, p <0.0001; AUC 0.8 (0.69-0.91)) and to discriminate the early glaucoma from the advanced stages: AFD Disc Peripapillary Inferior Temporalis (z=5.61, p<0.0001; AUC 0.94 (0.86-1.0)) and the mean flow velocity in the CRA (z=4.16, p<0.0001; AUC 0.81 (0.69-0.92)). CONCLUSION: The present study revealed the important role of OCT-angiography in the early glaucoma detection and its monitoring. Microcirculation in the macular area and its thickness in the inferior sector are of high importance. These results allow understanding the early involvement of macula inner layers in the pathological process in glaucoma.

About the Authors

N. I. Kurysheva
The Ophthalmological Center of the Federal Medical and Biological Agency, Clinical Hospital No. 86
Russian Federation


E. V. Maslova
The Ophthalmological Center of the Federal Medical and Biological Agency, Clinical Hospital No. 86
Russian Federation


A. V. Trubilina
Institute of Improvement of Professional Skills of the Federal Medico-Biological Agency of Russia
Russian Federation


M. B. Lagutin
The Lomonosov Moscow State Institute
Russian Federation


References

1. Chang R., Budenz D.L. New developments in optical coherence tomography for glaucoma. Curr Opin Ophthalmol 2008; 19: 127-135. doi: 10.1097/ICU.0b013e3282f36cdf.

2. Menke M.N., Dabov S., Knecht P. et al. Reproducibility of retinal thickness measurements in healthy subjects using spectralis optical coherence tomography. Am J Ophthalmol 2009; 147: 467-472. doi: 10.1016/j.ajo.2008.09.005.

3. Pueyo V., Polo V., Larrosa J.M. et al. Diagnostic ability of the Heidelberg retina tomograph, optical coherence tomograph, and scanning laser polarimeter in open-angle glaucoma. J Glaucoma 2007; 16: 173-177.

4. Leite M.T., Rao H.L., Zangwill L.M. et al. Comparison of the diagnostic accuracies of the Spectralis, Cirrus, and RTVue optical coherence tomography devices in glaucoma. Ophthalmology 2011; 118: 1334-1339. doi: 10.1016/j.ophtha.2010.11.029.

5. Leung C.K., Ye C., Weinreb R.N. et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: analysis of the retinal nerve fiber layer map for glaucoma detection. Ophthalmology 2010; 117: 1684-1691. doi: 10.1016/j.ophtha.2009.06.061.

6. Larrosa J., Polo V., Ferreras A., Calvo P. et al. Neural network analysis of different segmentation strategies of nerve fiber layer assessment for glaucoma diagnosis. J Glaucoma 2015; 24(9): 672-678. doi: 10.1097/IJG.0000000000000071.

7. Wang X., Li S., Fu J. et al. Comparative study of retinal nerve fibre layer measurement by RTVue OCT and GDx VCC. Br J Ophthalmol 2011; 95: 509-513.

8. Leung C.K., Ye C., Weinreb R.N. et al. Impact of age-related change of retinal nerve fiber layer and macular thicknesses on evaluation of glaucoma progression. Ophthalmology 2013; 120: 2493-2500.

9. Curcio C.A., Allen K.A. Topography of ganglion cells in human retina. J Comp Neurol 1990; 300: 5-25.

10. Arintawati P., Sone T., Akita T., Tanaka J., Kiuchi Y. The applicability of ganglion cell complex parameters determined from SD-OCT images to detect glaucomatous eyes. J Glaucoma 2013; 22(9): 713-718. doi: 10.1097/IJG.0b013e318259b2e1.

11. Hood D.C., Raza A.S., de Moraes C.G. Glaucomatous damage of the macula. Prog Retin Eye Res 2013; 32: 1-21. doi: 10.1016/j. preteyeres.2012.08.003.

12. Курышева Н.И., Паршунина О.А., Маслова Е.В., Киселева Т.Н., Лагутин М.Б. Диагностическая значимость исследования глазного кровотока в раннем выявлении первичной открытоугольной глаукоме. Национальный журнал глаукома 2015; 3(14): 19-28. [Kurysheva N.I., Parshunina O.A., Maslova E.V., Kiseleva T.N., Lagutin M.B. Diagnostic significance of the research of ocular blood flow in early detection of primary open-angle glaucoma. Natsional’nyi zhurnal glaukoma 2015; 3(14): 19-28. (In Russ.)].

13. Курышева Н.И., Арджевнишвили Т.Д., Киселева Т.Н., Фомин А.В. Хориоидея при глаукоме: результаты исследования методом оптической когерентной томографии. Национальный журнал глаукома 2013; 4: 73-83. [Kurysheva N.I., Ardzhevnishvili T.D., Kiseleva T.N., Fomin A.V. The choroid in glaucoma: the results of a study by optical coherence tomography. Natsional’nyi zhurnal glaukoma 2013; 4: 73-83. (In Russ.)].

14. Anderson D.R. What happens to the optic disc and retina in glaucoma. Ophthalmology 1983; 90(7): 766-770.

15. Balaratnasingam C., Morgan W.R., Hazelton M.L., House P.R., Barry C.J., Chan Н., Cringle S.J., Yu D.Y. Value of retinal vein pulsation characteristics in predicting increased optic disc excavation. Br J Ophthalmol 2006; 91: 441-444.

16. Caprioli J., Coleman A.L. Blood Flow in Glaucoma Discussion. Blood pressure, perfusion pressure, and glaucoma. Am J Ophthalmol 2010; 149(5): 704-712. doi: 10.1016/j.ajo.2010.01.018.

17. Schmidl D., Werkmeister R., Garhöfer G., Schmetterer L. Ocular perfusion pressure and its relevance for glaucoma. Klin Monbl Augenheilkd 2015; 232(2): 141-146. doi: 10.1055/s-0034-1383398.

18. Konieczka K., Ritch R., Traverso C., Kim D., Kook M., Golubnitschaja O., Erb C., Reitsamer Н., Kida T., Kurysheva N. Flammer syndrome. The EPMA J 2014; 5: 11. doi: 10.1186/1878-5085-5-11.

19. Spaide R., Klancic J., Cooney M. Retinal vascular layers imaged by fluorescein angiography. JAMA Ophthalmol 2015; 133: 45-50. doi: 10.1001/jamaophthalmol.2014.3616.

20. Liu L., Jia Y., Takusagawa Н., Morrison J., Huang D. Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol 2015; 133(9): 1045-1052. doi: 10.1001/jamaophthalmol.2015.2225.

21. Wang Y., Fawzi A.A., Varma R. et al. Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases. Invest Ophthalmol Vis Sci 2015; 52: 840-845.

22. Savastano M., Lumbroso B., Rispoli M. In vivo characterization of retinal vascularization morphology using optical coherence tomography angiography. Retina 2015; 35(11): 2196-2203.

23. Harwerth R.S., Wheat J.L., Fredette M.J., Anderson D.R. Linking structure and function in glaucoma. Prog Retin Eye Res 2010; 29: 249-271. doi: 10.1016/j.preteyeres.2010.02.001.

24. Medeiros F.A., Lisboa R., Weinreb R.N., Girkin C.A., Liebmann J.M., Zangwill L.M. A combined index of structure and function for staging glaucomatous damage. Arch Ophthalmol 2012; 130: 1107-1116.

25. Sung K.R., Sun J.Н., Na J.Н. et al. Progression detection capability of macular thickness in advanced glaucomatous eyes. Ophthalmology 2012; 119: 308-313. doi: 10.1016/j.ophtha.2011.08.022.

26. Gardiner S.K., Johnson C.A., Demirel S. The effect of test variability on the structure-function relationship in early glaucoma. Graefes Arch Clin Exp Ophthalmol 2012; 250: 1851-1861. doi: 10.1007/s00417-012-2005-9.

27. Курышева Н.И., Иртегова Е.Ю., Паршунина О.А., Киселева Т.Н., Арджевнишвили Т.Д. Поиск новых маркеров в ранней диагностике первичной открытоугольной глаукомы. Российский офтальмологический журнал 2015; 3: 23-29. [Kurysheva N.I., Irtegova E.Yu., Parshunina O.A., Kiseleva T.N., Ardzhevnishvili T.D. The search for new markers in the early diagnosis of primary open-angle glaucoma. Russian Ophthalmological J 2015; 3: 23-29. (In Russ.)].

28. Snodderly D., Weinhaus R., Choi J. Neural-vascular relationships in central retina of macaque monkeys (Macaca fascicularis). J Neurosci 1992; 12: 1169-1193.

29. Heijl A., Lundqvist L. The frequency distribution of earliest glaucomatous visual field defects documented by automated perimetry. Acta Ophthalmol 1984; 62: 657-664.

30. Gabriele M.L., Wollstein G., Ishikawa Н., Xu J., Kim J., Kagemann L., Folio L.S., Schuman J.S. Three dimensional optical coherence tomography imaging: advantages and advances. Prog Retin Eye Res 2010; 29: 556-579. doi: 10.1016/j.preteyeres.2010.05.005.

31. Anctil J.-L., Anderson D.R. Early foveal involvement and generalized depression of the visual field in glaucoma. Arch Ophthalmol 1984; 102: 363-370.

32. Jeong J., Kang M., Kim S., Pattern of macular ganglion cell-inner plexiform layer defect generated by spectral-domain OCT in glaucoma patients and normal subjects. J Glaucoma 2015; 24: 583-590. doi: 10.1097/IJG.0000000000000231.

33. Drance S. The early field defects in glaucoma. Invest Ophthalmol 1969; 8: 84-91.

34. Kuang T., Zhang C., Zangwill L., Weinreb R., Medeiros F. Estimating lead time gained by optical coherence tomography in detecting glaucoma before development of visual field defects. Ophthalmology 2015; 122(10): 2002-2009. doi: 10.1016/j.ophtha.2015.06.015.

35. Hood D.C., Raza A.S., de Moraes C.G.V., Odel J.G., Greensten V.C., Liebmann J.M., Ritch R. Initial arcuate defects within the central 10 degrees in glaucoma. Invest Ophthalmol Vis Sci 2011; 52: 940-946.

36. Medeiros F., Zangwill L., Alencar L. et al. Detection of glaucoma progression with stratus OCT retinal nerve fiber layer, optic nerve head, and macular thickness measurments. Invest Ophthalmol Vis Sci 2009; 50: 5741-5748.

37. Leung C.K., Cheung C.Y., Weinreb R.N. et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology 2009; 116: 1257-1263.

38. Leite M., Zangwill L., Weinreb R. et al. Effect of disease serviaty on the performance of Cirrus spectral-domain OCT for glaucoma diagnosis. Invest Ophthalmol Vis Sci 2010; 51: 4104-4109. doi: 10.1167/iovs.09-4716.

39. Leite M.T., Zangwill L.M., Weinreb R.N., Rao Н.L., Alencar L.M., Medeiros F.A. Structure-function relationships using the Cirrus spectral domain optical coherence tomograph and standard automated perimetry. J Glaucoma 2012; 21: 49-54.

40. Lisboa R., Leite M.T., Zangwill L.M., Tafreshi A., Weinreb R.N., Medeiros F.A. Diagnosing preperimetric glaucoma with spectral-domain optical coherence tomography. Ophthalmology 2012; 119: 2261-2269. doi: 10.1016/j.ophtha.2012.06.009.

41. Leung C.K., Yu M., Weinreb R.N. et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: patterns of retinal nerve fiberlayer progression. Ophthalmology 2012; 119: 1858-1866. doi: 10.1016/j.ophtha.2012.03.044.

42. Liu S., Wang B.B., Yin B.M. et al. Retinal nerve fiber layer reflectance for early glaucoma diagnosis. J Glaucoma 2014; 23: 45-52. doi: 10.1097/IJG.0b013e31829ea2a7.

43. Kuang T.M., Zhang C., Zangwill L.M., Weinreb R.N., Medeiros F.A. Estimating lead time gained by optical coherence tomography in detecting glaucoma before development of visual field defects. Ophthalmology 2015; 122(10): 2002-2009. doi: 10.1016/j.ophtha. 2015.06.015.


Review

For citations:


Kurysheva N.I., Maslova E.V., Trubilina A.V., Lagutin M.B. OCT-angiography (OCT-A) in early glaucoma detection and monitoring. National Journal glaucoma. 2016;15(4):20-31. (In Russ.)

Views: 1299


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)