DEGENERATIVE CHANGES OF THE CORNEAL NERVES IN PATIENTS WITH PRIMARY OPEN-ANGLE GLAUCOMA
Abstract
PURPOSE: To evaluate the corneal nerves structure in patients with primary open-angle glaucoma (POAG).
METHODS: The study included 111 patients. The main group comprised 76 patients (148 eyes) aged 36 to 83 years (62.9Ѓ}2.3 years) with I-IV stages of POAG, control group consisted of 35 healthy volunteers (70 eyes) aged 38-76 years (65.3Ѓ}1.4 years) with normal IOP level and no POAG signs. Patient examination included visometry, biomicroscopy, ophthalmoscopy, gonioscopy, contour tonometry (Pascal), OCT (Zeiss Stratus 3000) and corneal confocal microscopy (HRT III, with Rostock Cornea Modul).
RESULTS: The following structural changes in the corneal nerves were revealed in POAG patients: a decreasing number of nerves, nerve fibers thinning and discontinuity. A quantitative assessment of the corneal nerves tortuosity degree was made by calculating the anisotropy coefficient of the corneal nerves directivity (KΔL). Mean KΔL in the control group was 2.78 (2.47; 3.57) (Me (Q1; Q3)), which significantly differed from the glaucoma group (p=0.0014), where mean KΔL was 2.51 (2.07; 3.16) (Me (Q1; Q3)). Significant differences in KΔL were obtained for different stages of glaucoma (p=0.0004), a moderate negative KΔL bond was detected with POAG stage (r=-0.41, p<0.001). Positive, though weak, correlation was established between KΔL and the following OCT parameters: Rim Cross Sectional Area (r=0.27, p=0.001), Rim Area (r=0.25, p=0.0032) (p<0.005), Rim Volume (r=0.23, p=0.01) and Avg. Thickness (r=0.29, p=0.00063) (p<0.001). The interocular asymmetry of the corneal nerves structure in patients with different glaucoma stages in pair eyes has been studied. The KΔL index asymmetry was calculated. It turned out that this index in the glaucoma group was higher than in the control group, with values in both groups showing a significant difference (p=0.00026). KΔL asymmetry index directly correlated with the divergence in POAG stages between the pair eyes.
CONCLUSION: The presence of structural changes in the corneal nerves layer and the increase in the severity of these changes depending on glaucoma stage, indicate that the dystrophic process in the cornea is a local manifestation of glaucomatous neurodegenerative process. This is best seen in the study of interocular asymmetry in patients with different glaucoma stages in pair eyes. This gives us a notion of universality of the neurodegenerative process in patients with POAG, and consequently, suggests that the study of corneal structures may have diagnostic value.
About the Authors
V. V. StrakhovRussian Federation
Med.Sc.D., Professor, Head of the Ophthalmology Department
5 Revolucionnaya str., Yaroslavl, 150000
Z. V. Surnina
Russian Federation
Ph.D., M.D.
11A, B Rossolimo st., Moscow, 119021
A. I. Malakhova
Russian Federation
Ph.D., M.D.
27 Gagarina ave., Smolensk, 214000
O. N. Klimova
Russian Federation
Ph.D., Assistant professor of the Ophthalmology Department
5 Revolucionnaya str., Yaroslavl, 150000
A. A. Popova
Russian Federation
M.D.
42 Svobody str., Yaroslavl, 150040
References
1. Volkov V.V. Glaukoma otkrytougol’naja. [Open-angle glaucoma]. Moscow: MIA, 2008; 348 p. (In Russ.).
2. Neroyev V.V., Kiseleva O.A., Bessmertny A.M. The results of multicenter studies of epidemiological characteristics of primary open angle glaucoma in the Russian Federation. Russian Ophthalmological J 2013; 3:4-7. (In Russ.).
3. Erichev V.P., Petrov S.Y., Kozlova I.V., Makarova A.S., Reshchikova V.S. Modern methods of functional diagnostics and monitoring of glaucoma. Part 1. Perimetry as a functional diagnostics method. National Journal Glaucoma 2015; 14(2):75-81. (In Russ.).
4. Erichev V.P., Petrov S.Y., Kozlova I.V., Makarova A.S., Reshchikova V.S. Modern methods of functional diagnostics and monitoring of glaucoma. Part 2. Diagnosis of structural damage of the retina and optic nerve. National Journal Glaucoma 2015; 14(3):72-79. (In Russ.).
5. Erichev V.P., Petrov S.Y., Kozlova I.V., Makarova A.S., Reshchikova V.S. Modern methods of functional diagnostics and monitoring of glaucoma. Part 3. The role of the morphological and functional relationships in the early detection and monitoring of glaucoma. National Journal Glaucoma 2016;15(2):96-101. (In Russ.).
6. Strakhov V.V., Alekseev V.V. The pathogenesis of primary glaucoma — ≪all or nothing≫. Glaucoma 2009; 2:40-52. (In Russ.).
7. Strakhov V.V., Korchagin N.V., Popova A.A. The biomechanical aspect of the pathological optic disc cupping development in glaucoma. National Journal Glaucoma 2015; 14(3):58-71. (In Russ.).
8. Strakhov V.V., Alekseev V.V., Popova A.A., Al-Mrrani A.M. Intraocular asymmetry of thickness of iris and sclera according to ultrasound biomicroscopy in normal eyes and patients with primary open-angle glaucoma. RMJ Clinical Ophthalmology 2012; 13(4): 118-120. (In Russ.).
9. Alekseev I.B., Strakhov V.V., Melnikova N.V., Popova A.A. Changes in the fibrous tunic of the eye in patients with newly diagnosed primary openangle glaucoma. Natsional’nyi zhurnal glaukoma 2016; 15(1): 13-24. (In Russ.).
10. Strakhov V.V., Ermakova A.V., Korchagin N.V., Kasanova S.Yu. Asymmetry of the tonometric, hemodynamic, and bioretinometric parameters of paired eyes in norm and in primary glaucoma. Glaucoma 2008; 4:11-16. (In Russ.).
11. Avetisov S.E., Bubnova I.A., Antonov A.A. The biomechanical properties of the cornea: clinical significance, research methods, the possibility to systematize approaches to the study. Vestn Oftalmol 2010; 126(6):3-7. (In Russ.).
12. Deev L.A., Molchanov V.V., Malakhova A.I., Andreeva O.V. Classification of pathomorphological changes in the cornea in patients with terminal stage of primary glaucoma. Glaucoma 2010; 4:3-9. (In Russ.).
13. Malakhova A.I., Deev L.A., Molchanov V.V. Changes in the cornea in patients with primary open-angle glaucoma. Natsional’nyi zhurnal glaukoma 2015; 14(1):84-93. (In Russ.).
14. Egorova G.B., Fedorov A.A., Averich V.V. Morphological changes in glaucoma against a background of increased IOP and with prolonged hypotensive therapy based on the results of confocal microscopy of the cornea. RMJ Clinical Ophthalmology 2016; 3:113-117. (In Russ.).
15. Ranno S., Fogagnolo P., Rossetti L., Orzalesi N., Nucci P. Changes in corneal parameters at confocal microscopy in treated glaucoma patients. Clin Ophthalmol 2011; 5:1037-1042.
16. Masters B.R. Confocal microscopy: history, principles, instruments, and some applications to the living eye. Comments Mol Cell Biophys 1995; 8(5):243-271.
17. Zhivov A., Stave J., Vollmar B., Guthoff R. In vivo confocal microscopic evaluation of Langerhans cell density and distribution in the normal human corneal epithelium. Graefes Arch Clin Exp Ophthalmol 2005; 243:1056-1061.
18. Muller L.J., Vrensen G.F.J.M., Pels L., Cardozo B.N., Willekens B. Architecture of human corneal nerves. Invest Ophtalmol Vis Sci 1997; 38:985-994.
19. Muller L.J., Marfurt C.F., Kruse F., Tervo T.M.T. Corneal nerves: structure, contents and function. Exper Eye Res 2003; 76:521-542.
20. Tavakoli M., Hossain P., Malik R.A. Clinical application of corneal confocal microscopy. Clin Ophtalmol 2008; 2(2):435-445.
21. Scarpa F., Grisan E., Ruggeri A. Automatic recognition of corneal nerve structures in images from confocal microscopy. Invest Ophthalmol Vis Sci 2008; 49:4801-4807.
22. Prydal J.I., Kerr Muir M.G., Dilly P.N., Corbett M.C., Verma S., Marshall J. Confocal microscopy using oblique sections for measurement of corneal epithelial thickness in conscious humans. Acta Ophthalmol Scand 1997; 75:624-628.
23. Petroll W.M., Jester J.V., Cavanagh H.D. In vivo confocal imaging. Int Rev Exp Pathol 1996; 36:93-129.
24. Kоhler B., Allgeier S., Eberle F. et al. Image reconstruction of the corneal subbasal nerve plexus with extended field of view from focus image stacks of a confocal laser scanning microscope. Klin Monatsbl Augenheilkd 2011; 228:1060-1066.
25. Oliveira-Soto L., Efron N. Morphology of corneal nerves using confocal microscopy. Cornea 2001; 20:374-384.
26. Masters B.R., Thaer A.A. In vivo human corneal confocal microscopy of identical fields of subepithelial nerve plexus, basal epithelial, and wing cells at different times. Microsc Res Tech 1994; 29:350-356.
27. Avetisov S.A., Egorova G.B., Fedorov A.A. et al. Confocal microscopy of the cornea. Message 1. Features of a normal morphological picture. Vestn Oftalmol 2008; 3:3-5. (In Russ.).
28. Avetisov S.E., Egorova G.B., Fedorov A.A., Bobrovskikh N.V. Confocal microscopy of the cornea. Communication 2. Morphological changes in keratoconus. Vestn Oftalmol 2008; 124(3):6-9. (In Russ.).
29. Tkachenko N.V., Astakhov Yu.S. Diagnostic possibilities of confocal microscopy in the investigation of the surface structures of the eyeball. Ophthalmologic vedomosti 2009; 2(1): 82-89. (In Russ.).
30. Stein G.I. Rukovodstvo po konfokal’noj mikroskopii [Manual on confocal microscopy]. SPb: INC RAS, 2007; 6-10 p. (In Russ.).
31. Marfurt C.F., Cox J., Deek S., Dvorscak L.. Anatomy of the human corneal innervations. Exper Eye Res 2009; 90:478-492.
32. Jalbert I., Stapleton F., Papas E., Sweeney D.F., Coroneo M. In vivo confocal microscopy of the human cornea. Br J Ophthalmol 2003; 87(2):225-236.
33. Efron N., Perez-Gomez I., Mutalib HA. Confocal microscopy of the human cornea. Cont Lens Anterior Eye 2001; 24:16-24.
34. Avetisov S.E., Surnina Z.V., Novikov I.A., Makhotin S.S. New approaches to assess the condition of nerve fibers of the cornea. In: VIII Russian national ophthalmological forum. Col. Sci. P. 2015: 48-50. (In Russ.).
35. Avetisov S.E., Novikov I.A., Makhotin S.S., Surnina Z.V. Calculation of the coefficients of anisotropy and symmetry of the nerve orientation of the cornea on the basis of automated recognition of digital confocal images. Medical equipment 2015; 3:23-25. (In Russ.).
36. Burgoyne C.F., Downs J.C., Bellezza A.J. at al. The optic nerve head as biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Progr Retin Eye Res 2005; 24:19-73.
37. Burgoyne C.F., Morrison J.C. The anatomy and pathophysiology of the optic nerve head in glaucoma. J Glaucoma 2001; 10(5): 16-18.
38. Quigley H., Anderson D. Distribution of axonal transport blockade by acute intraocular pressure elevation in the primate optic nerve head. Invest Ophthalmol Vis Sci 1977; 16(7):640-644.
39. Quigley H., Addicks E.M., Green W.R. Optic nerve damage in human glaucoma. Arch Ophthalmol 1982; 100:135-146.
Review
For citations:
Strakhov V.V., Surnina Z.V., Malakhova A.I., Klimova O.N., Popova A.A. DEGENERATIVE CHANGES OF THE CORNEAL NERVES IN PATIENTS WITH PRIMARY OPEN-ANGLE GLAUCOMA. National Journal glaucoma. 2017;16(4):52-68. (In Russ.)