Preview

National Journal glaucoma

Advanced search

THEORETICAL JUSTIFICATION OF A NEW METHOD IN CILIARY BODY MICROCIRCULATORY ISCHEMIA DIAGNOSTICS

Abstract

PURPOSE: A theoretical justification of a new method of diagnosing the ciliary body microcirculatory ischemia.

METHODS: Mathematical modeling of high-frequency current distribution in eye tissues during electrical impedance plethysmography (IPG). Mathematical modeling of converting the degree of local short-term globe vacuum compression into the level of intraocular pressure (IOP) elevation.

RESULTS: The possibility to diagnose the ciliary body microcirculatory ischemia has been theoretically substantiated. According to the utility model, original suction ring with rheographic electrodes was applied to perilimbal sclera. Diastolic ocular perfusion pressure (OPP) was determined by means of ocular impedance plethysmography (IPG) in arterioles of the ciliary body microcirculation bed, excluding the contribution of blood circulation in superficial subconjunctival vessels of the anterior eye segment and in intraocular vessels of the posterior eye segment. Determination of perfusion pressure in small vessels of the anterior eye segment was carried out at a lower IOP level. Aqueous humor inflow and outflow was temporarily blocked during the examination to ensure an unchanging eye globe volume. The following formula was used to calculate OPP: , where VAC is the degree of vacuum compression applied and D is the eye globe diameter, coefficient K is determined by specific dimensions of suction ring. The ciliary body microcirculatory ischemia was diagnosed when diastolic OPP was below 35.0 mmHg.

CONCLUSION: The proposed method of determining diastolic OPP in the arterioles of the ciliary body microcirculation bed in case of experimental confirmation could be useful for early detection of intraocular vascular microcirculation disorders not only in patients with glaucoma (including low pressure glaucoma), but also in cases of myopia, diabetic angiopathy, peripheral retinal degeneration, age-related macular degeneration, uveitis, and it could also allow the assessment of the treatment effectiveness after conservative therapy and surgical interventions.

About the Author

A. G. Kovalchouk
«The Filatov Institute of Eye Diseases and Tissue Therapy of the National Academy of Medical Sciences of Ukraine»
Ukraine

Ph.D., junior research associate of Biomedical Engineering Department

49/51, Frantsuzskiy Boulevard, Odessa, 65061



References

1. Aleksandrov An.A., Chukaeva I.I. Microcirculatory ischemia and statins: lessons from interventional cardiology. Rational pharmacotherapy in cardiology 2007; 1:48-54. (In Russ.).

2. Alm A. Ocular circulation. In: Hart WM(ed.) Adler’s physiology of the eye. St. Louis, Baltimore: Mosby, 1992; 198-227.

3. Vit V.V. Stroenie zritel’noi sistemy cheloveka [Structure of the human visual system]. Odessa: Astroprint, 2003; 187-191, 301-322. (In Russ.).

4. Dorner G.T., Polska E., Garhofer G., Zawinka C., Frank B., Schmetterer L. Calculation of the diameter of the central retinal artery from noninvasive measurements in humans. Curr Eye Res 2002; 25:341-345. doi.org/10.1076/ceyr.25.6.341.14231.

5. Michelson G., Schuierer G. Absolute blood flow in the ophthalmic artery. Fortschr Ophthalmol 1991; 88:687-689.

6. Bunin A.Ya. Gemodinamika glaza i metody ee issledovaniya. [Eye hemodynamics and methods of its investigation]. М., 1971:1-196. (In Russ.).

7. Cioffi G.A., Granstam E., Alm A. Ocular circulation. In: Kaufmann PL and Alm A. (eds.) Adler’s physiology of the eye. St. Louis, London: Mosby, 2003; 747-784.

8. Katsnel’son L.A. Reografiya glaza. [Eye rheography]. M.: Meditsina, 1977; 1-120. (In Russ.).

9. Lobstein, A., Herr F. L′ophthalmodinamometrie le glaucoma. Annal Oculist 1966; 199:38-69.

10. Machekhin V.A. The dependence of tolerant intraocular pressure and arterial diastolic blood pressure a. brahialis. Vestnik OGU 2014; 12(173): 212-217. (In Russ.).

11. Ulrich Ch., Ulrich Wulff-D. Oculo-oscillo-dynamography: a diagnostic procedure for recording ocular pulses and measuring retinal and ciliary arterial blood pressures. Ophthalmik Res 1985; l7:308-317. doi.org/10.1159/000265391.

12. Strik F. OODG-Ulrich and OPG-Gee: a comparative study. Documenta Ophthalmologica 1988; 69:51-71. doi.org/10.1007/bf00154418.

13. Ernest J.T., Archer D., Krill A.E. Ocular hypertension induced by scleral suction cup. Invest Ophthalmol 1972; 11(1):29-34.

14. Tielsch J.M., Katz J., Sommer A. et al. Hypertension, perfusion pressure, and primary open-angle glaucoma. A populationbased assessment. Arch Ophthalmol 1995; 113:216-221. doi.org/ 10.1001/archopht.1995.01100020100038.

15. Bonomi L., Marchini G., Marraffa M. et al. Vascular risk factors for primary open-angle glaucoma: the Egna-Neumarkt Study. Ophthalmology 2000; 107:1287-1293. doi.org/10.1016/s01616420(00)00138-x.

16. Quigley H.A., West S.K., Rodriguez J. et al. The prevalence of glaucoma in a population-based study of Hispanic subjects: Proyecto VER. Arch Ophthalmol 2001; 119:1819-1826. doi.org/10.1001/ archopht.119.12.1819.

17. Memarzadeh F., Ying-Lai M., Chung J., Azen S.P., Varma R.; Los Angeles Latino Eye Study Group. Blood pressure, perfusion pressure, and open-angle glaucoma: the Los Angeles Latino Eye Study. Invest Ophthalmol Vis Sci 2010; 51(6):2872-2877. doi.org/ 10.1167/iovs.08-2956.

18. Leske M.C., Wu S-Y., Nemesure B., Hennis A. Incident open-angle glaucoma and blood pressure. Arch Ophthalmol 2002; 120(7): 954-959. doi.org/10.1001/archopht.120.7.954.

19. Leske M.C., Wu S.-Y., Hennis A. et al; BESs Study Group. Risk factors for incident open-angle glaucoma. The Barbados Eye Studies. Ophthalmology 2008; 115:85-93. doi.org/10.1016/j.ophtha.2007. 03.017.

20. Cherecheanu A.P., Garhofer G., Schmidl D., Werkmeister R., Schmetterer L. Ocular perfusion pressure and ocular blood flow in glaucoma. Curr Opin Pharmacol 2013; 13:36-42. doi.org/ 10.1016/j.coph.2012.09.003.

21. Gabriel C. Compilation of the dielectric properties of body tissues at RF and microwave frequencies Report N.AL/OE-TR-1996-0037, Occupational and environmental health directorate, Radiofrequency Radiation Division, Brooks Air Force Base, Texas (USA), 1996.

22. Downs J.C., Roberts M.D., Burgoyne C.F. Mechanical environment of the optic nerve head in glaucoma. Optom Vis Sci 2008; 85(6):425-435. doi: 10.1097/OPX.0b013e31817841cb.

23. Chen C., Reed J.F., Rice D.C., Gee W., Updike D.P., Salathe E.P. Biomechanics of ocular pneumoplethysmography. J Biomech Eng 1993; 115(3):231-238. doi.org/10.1115/1.2895480.

24. Lyubimov G.A. On the role of the rigidity of the shell of the eyeball in the formation of the intraocular pressure. Glaukoma 2006; 2:64-67. (In Russ.).


Review

For citations:


Kovalchouk A.G. THEORETICAL JUSTIFICATION OF A NEW METHOD IN CILIARY BODY MICROCIRCULATORY ISCHEMIA DIAGNOSTICS. National Journal glaucoma. 2017;16(4):69-78. (In Russ.)

Views: 556


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)