RAT MODELS OF GLAUCOMATOUS OPTIC NEUROPATHY
Abstract
Experimental in vivo glaucoma models allow expanding the knowledge of the glaucomatous optic neuropathy pathogenesis. An important criterion of choosing an experimental animal model is the ability to extrapolate received data to humans. This review covers main models of experimental glaucoma in rodents and its technology, including rodent anatomy and physiology specifics. Using rats in glaucoma modeling offers the advantage of fast disease progression and ease of use. Genetic models are based on congenital impairment of intraocular hydrodynamics due to gene mutation; induced models refer to artificial intraocular pressure (IOP) elevation or initiation of neuropathy without affecting the aqueous outflow. Methods aimed at hydrodynamics alteration lead to IOP increase and thus to glaucomatous optic neuropathy development. These include thermic, mechanical and laser effects on the aqueous humor outflow. Optic neuropathy without affecting IOP can be caused by mechanical impairment of the optic nerve, ischemia followed by reperfusion, excitotoxicity, or intravitreal injection of endothelin-1 or rose bengal with following photostimulation. Genetic glaucoma models include rodents with congenital impairment of eye drainage zone due to gene mutations, such as DBA gene family and α1-subunits of I-type collagen mutation, synthesis of altered myocilin or calcitonin receptorlike receptor expression. The current range of rodent glaucoma modelling methods is a perspective and important part of in vivo studies, related to glaucoma pathogenesis and treatment.
About the Authors
S. Yu. PetrovRussian Federation
Ph.D., Leading Research Associate of the Glaucoma Department
11А Rossolimo st., Moscow, 119021
A. M. Subbot
Russian Federation
Ph.D., Senior Research Associate, Laboratory of fundamental research in Ophthalmology
11А Rossolimo st., Moscow, 119021
A. N. Gabashvili
Russian Federation
Ph.D., Research Associate, Laboratory of fundamental research in Ophthalmology
11А Rossolimo st., Moscow, 119021
A. V. Volzhanin
Russian Federation
Resident
11А Rossolimo st., Moscow, 119021
A. A. Vitkov
Russian Federation
Student
8 Malaya Trubetskaya st., Moscow, 119048
References
1. Bauer S.M., Tovstik P.E., Kachanov A.B. On the question of creating a mathematical model of glaucoma development. Rossiyskiy zhurnal biomekhaniki 1999; 3(2):9-10. (In Russ.).
2. Morschinina A.A., Morschinina D.A. About mathematical modelling of glaucoma. Vestnik Sankt-Peterburgskogo universiteta. Seriya 1. Matematika. Mekhanika. Astronomiya 2014; 1(1):144-151. (In Russ.).
3. Pavluchenko K.P., Serdyuk V.N., Mogilevskiy S.Yu. Multifactor mathematical model of efficiency of treatment of primary open-angle glaucoma. Ophthalmology Eastern Europe 2014; 4(23):267-271. (In Russ.).
4. Izzotti A., Sacca S.C., Longobardi M., Cartiglia C. Mitochondrial damage in the trabecular meshwork of patients with glaucoma. Arch Ophthalmol 2010; 128(6):724-730. doi: 10.1001/archophthalmol. 2010.87.
5. Alyabyeva Zh.Yu., Romanova T.B., Lipatova V.A., Botchei V.M. Experimenal models of glaucoma in the research of a new neuroprotection treatment. RMJ Clinical Ophthalmology 2015; 15(3):145-149. (In Russ.).
6. Levin L.A. Animal and culture models of glaucoma for studying neuroprotection. Eur J Ophthalmol 2001; 11 Suppl 2: S23-29.
7. Palmero M., Bellot J.L., Castillo M., Garcia-Cabanes C., Miquel J., Orts A. An in vitro model of ischemic-like stress in retinal pigmented epithelium cells: protective effects of antioxidants. Mech Ageing Dev 2000; 114(3):185-190.
8. Darenskaya N.G., Ushakov I.B., Ivanov I.V., Nasonova T.A., Esaulenko I.E., Popov V.I. Ekstrapolyatsiya eksperimental’nykh dannykh na cheloveka v fiziologii i radiologii [Extrapolation of the experimentla data on a human in physiology and radiology]. Voronezh, Istoki Publ., 2004. 232 p. (In Russ.).
9. Krasovskiy G.N., Egorova N.A., Anonova M.G. Problem of biotesting results extrapolation on a human. Toksikologicheskiy vestnik 2000; (6):13-19. (In Russ.).
10. Karkischenko N.N. Experimental data extrapolation on the methodics of drug clinical study. Farmakologiya i toksikologiya 1982; (3):22. (In Russ.).
11. Morrison J.C., Cepurna W.O., Johnson E.C. Modeling glaucoma in rats by sclerosing aqueous outflow pathways to elevate intraocular pressure. Exp Eye Res 2015; 141:23-32. doi: 10.1016/j. exer.2015.05.012
12. Morrison J., Farrell S., Johnson E., Deppmeier L., Moore C.G., Grossmann E. Structure and composition of the rodent lamina cribrosa. Exp Eye Res 1995; 60(2):127-135.
13. Sun D., Lye-Barthel M., Masland R.H., Jakobs T.C. The morphology and spatial arrangement of astrocytes in the optic nerve head of the mouse. J Comp Neurol 2009; 516(1):1-19. doi: 10.1002/ cne.22058.
14. Tehrani S., Johnson E.C., Cepurna W.O., Morrison J.C. Astrocyte processes label for filamentous actin and reorient early within the optic nerve head in a rat glaucoma model. Invest Ophthalmol Vis Sci 2014; 55(10):6945-6952. doi: 10.1167/iovs.14-14969.
15. Nguyen J.V., Soto I., Kim K.Y., Bushong E.A. et al. Myelination transition zone astrocytes are constitutively phagocytic and have synuclein dependent reactivity in glaucoma. Proc Natl Acad Sci USA 2011; 108(3):1176-1181. doi: 10.1073/pnas.1013965108
16. Morrison J.C., Fraunfelder F.W., Milne S.T., Moore C.G. Limbal microvasculature of the rat eye. Invest Ophthalmol Vis Sci 1995; 36(3):751-756.
17. Kwong J.M., Vo N., Quan A., Nam M. et al. The dark phase intraocular pressure elevation and retinal ganglion cell degeneration in a rat model of experimental glaucoma. Exp Eye Res 2013; 112:21-28. doi: 10.1016/j.exer.2013.04.008.
18. Lozano D.C., Hartwick A.T., Twa M.D. Circadian rhythm of intraocular pressure in the adult rat. Chronobiol Int 2015; 32(4): 513-523. doi: 10.3109/07420528.2015.1008135.
19. Moore C.G., Johnson E.C., Morrison J.C. Circadian rhythm of intraocular pressure in the rat. Curr Eye Res 1996; 15(2):185-191.
20. Jia L., Cepurna W.O., Johnson E.C., Morrison J.C. Patterns of intraocular pressure elevation after aqueous humor outflow obstruction in rats. Invest Ophthalmol Vis Sci 2000; 41(6): 1380-1385.
21. John S.W., Hagaman J.R., MacTaggart T.E., Peng L., Smithes O. Intraocular pressure in inbred mouse strains. Invest Ophthalmol Vis Sci 1997; 38(1):249-253.
22. Jia L., Cepurna W.O., Johnson E.C., Morrison J.C. Effect of general anesthetics on IOP in rats with experimental aqueous outflow obstruction. Invest Ophthalmol Vis Sci 2000; 41(11):3415-3419.
23. Johnson T.V., Fan S., Toris C.B. Rebound tonometry in conscious, conditioned mice avoids the acute and profound effects of anesthesia on intraocular pressure. J Ocul Pharmacol Ther 2008; 24(2):175-185. doi: 10.1089/jop.2007.0114.
24. Savinova O.V., Sugiyama F., Martin J.E., Tomarev S.I. et al. Intraocular pressure in genetically distinct mice: an update and strain survey. BMC Genet 2001; 2:12.
25. Johnson T.V., Tomarev S.I. Rodent models of glaucoma. Brain Res Bull 2010; 81(2-3):349-358. doi: 10.1016/j.brainresbull. 2009.04.004.
26. Filippopoulos T., Matsubara A., Danias J., Huang W. et al. Predictability and limitations of non-invasive murine tonometry: comparison of two devices. Exp Eye Res 2006; 83(1):194-201. doi: 10.1016/j.exer.2005.12.005.
27. Saeki T., Aihara M., Ohashi M., Araie M. The efficacy of TonoLab in detecting physiological and pharmacological changes of mouse intraocular pressure comparison with TonoPen and microneedle manometery. Curr Eye Res 2008; 33(3):247-252. doi: 10.1080/ 02713680801919716.
28. Pease M.E., Hammond J.C., Quigley H.A. Manometric calibration and comparison of TonoLab and TonoPen tonometers in rats with experimental glaucoma and in normal mice. J Glaucoma 2006; 15(6):512-519. doi: 10.1097/01.ijg.0000212276.57853.19.
29. Morrison J.C., Moore C.G., Deppmeier L.M., Gold B.G., Meshul C.K., Johnson E.C. A rat model of chronic pressure-induced optic nerve damage. Exp Eye Res 1997; 64(1): 85-96. doi: 10.1006/exer. 1996.0184.
30. Johnson E.C., Cepurna W.O., Jia L., Morrison J.C. The use of cyclodialysis to limit exposure to elevated intraocular pressure in rat glaucoma models. Exp Eye Res 2006; 83(1):51-60. doi: 10.1016/j. exer.2005.10.032.
31. Shareef S.R., Garcia-Valenzuela E., Salierno A., Walsh J., Sharma S.C. Chronic ocular hypertension following episcleral venous occlusion in rats. Exp Eye Res 1995; 61(3):379-382.
32. Laquis S., Chaudhary P., Sharma S.C. The patterns of retinal ganglion cell death in hypertensive eyes. Brain Res 1998; 784(1-2): 100-104.
33. Roubeix C., Godefroy D., Mias C., Sapienza A. et al. Intraocular pressure reduction and neuroprotection conferred by bone marrow-derived mesenchymal stem cells in an animal model of glaucoma. Stem Cell Res Ther 2015; 6:177. doi: 10.1186/ s13287-015-0168-0.
34. Ruiz-Ederra J., Verkman A.S. Mouse model of sustained elevation in intraocular pressure produced by episcleral vein occlusion. Exp Eye Res 2006; 82(5):879-884. doi: 10.1016/j.exer.2005.10.019
35. Gaasterland D., Kupfer C. Experimental glaucoma in the rhesus monkey. Invest Ophthalmol 1974; 13(6):455-457.
36. Gross R.L., Ji J., Chang P., Pennesi M.E. et al. A mouse model of elevated intraocular pressure: retina and optic nerve findings. Trans Am Ophthalmol Soc 2003; 101:163-169; discussion 169-171.
37. Ueda J., Sawaguchi S., Hanyu T., Yaoeda K. et al. Experimental glaucoma model in the rat induced by laser trabecular photocoagulation after an intracameral injection of India ink. Jpn J Ophthalmol 1998; 42(5):337-344.
Review
For citations:
Petrov S.Yu., Subbot A.M., Gabashvili A.N., Volzhanin A.V., Vitkov A.A. RAT MODELS OF GLAUCOMATOUS OPTIC NEUROPATHY. National Journal glaucoma. 2017;16(4):79-85. (In Russ.)