РЕТИНОПРОТЕКЦИЯ КАК ТЕРАПЕВТИЧЕСКАЯ СТРАТЕГИЯ ГЛАУКОМЫ: ОБЗОР ИСТОРИЧЕСКИХ И СОВРЕМЕННЫХ МИРОВЫХ ТЕНДЕНЦИЙ

Полный текст:


Аннотация

В обзоре рассматриваются исторические аспекты нейропротекции как терапевтической парадигмы глаукомы и ганглиозные клетки сетчатки (ГКС) в качестве основной мишени действия нейропротекторов. Контроль внутриглазного давления (ВГД) способствует замедлению гибели ГКС, что само по себе является нейропротекцией. Современные исследования имеют доказательства структурно-функционального ремоделирования всех слоев сетчатки при глаукоме, включая фоторецепторы, пигментный эпителий, биполярные и горизонтальные клетки, астроциты и клетки Мюллера, а также сосудистое русло. В зарубежной литературе обсуждается несколько подходов к лечению глаукомы с точки зрения улучшения функционального состояния ГКС — нейропротекция (≪neuroenhancement≫, ≪нейроулучшение≫) и нейрорегенерация. В связи с имеющимися новыми данными обсуждается необходимость введения понятия ретинопротекции как комплекса терапевтических мероприятий, направленных на предупреждение и восстановление структурно-функциональных повреждений сетчатки и зрительного нерва при глаукоме. Разнообразие потенциальных анатомических целей подразумевает использование лекарственных препаратов различных фармакологических групп. Одной из проблем лекарственной терапии при глаукоме является сложность доставки препарата к сетчатке. В статье приводятся преимущества и ограничения различных путей введения препаратов с целью ретинопротекции

Об авторах

И. А. Лоскутов
Научный клинический центр ОАО «Российские железные дороги»
Россия

Лоскутов Игорь Анатольевич, доктор медицинских наук, заведующий офтальмологическим отделением

125367, Москва, Волоколамское шоссе, д. 84

 



Е. Н. Саверская
Институт медико-социальных технологий ФГБОУ ВО «Московский государственный университет пищевых производств»
Россия

Доктор медицинских наук, профессор кафедры фармации

125080, Москва, Волоколамское шоссе, д. 11

 



Е. И. Лоскутова
VisuHealth, Центр исследования зрения Ирландии, Институт здоровья и экологической устойчивости, технологический институт Дублина
Ирландия

Медицинский директор 

Ирландия, Дублин 7

 



Список литературы

1. Schumer R.A., Podos S.M. The nerve of glaucoma! Arch Ophthalmol 1994; 112(1):37-44.

2. Weinreb R.N., Levin L.A. Is neuroprotection a viable therapy for glaucoma? Arch Ophthalmol 1999; 117(11):1540-1544.

3. Levin L.A., Crowe M.E., Quigley H.A., Lasker/IRRF initiative on astrocytes and glaucomatous neurodegeneration participants. Neuroprotection for glaucoma: requirements for clinical translation. Exp Eye Res 2016; pii: S0014-4835(16)30530-9. doi: 10.1016/ j.exer.2016.12.005. [Epub ahead of print].

4. Sena D.F., Lindsley K. Neuroprotection for treatment of glaucoma in adults. Cochrane Database Syst Rev 2013; (2):CD006539.

5. Sena D.F., Lindsley K. Neuroprotection for treatment of glaucoma in adults. Cochrane Database Syst Rev 2017; 1:CD006539.

6. Levin L.A. Neurobiologic rationale for neuroprotection. Chapter 1. In: Glaucoma Neuroprotection Monograph. Weinreb R.W., ed. Philadelphia, PA: Wolters Kluwer Health; 2006.

7. Muir K.W., Grosset D.G. Neuroprotection for acute stroke: making clinical trials work. Stroke 1999; 30(1):180-182.

8. Calkins D.J. Critical pathogenic events underlying progression of neurodegeneration in glaucoma. Prog Retin Eye Res 2012; 31:702-719.

9. Brady S., Morfini G.A Perspective on neuronal cell death signaling and neurodegeneration. Mol Neurobiol 2010; 42:25. doi:10.1007/ s12035-010-8128-2.

10. Belkin M. Neuroprotection: a great promise yet to be fulfilled. Glaucoma Today 2007; 5. www.glaucomatoday.com/pages/current/ 04.html. Accessed May

11. , 2007. 11. Levin L.A. Neuroprotection and regeneration in glaucoma. Ophthalmol Clin North Am 2005; 18:585-596.

12. Levin L.A., Peeples P. History of Neuroprotection and Rationale as a Therapy for Glaucoma. Am J Manag Care 2008; 14:S11-S14.

13. Doozandeh A., Yazdani S. Neuroprotection in glaucoma. J Ophthalmic Vis Res 2016; 11(2):209-220.

14. Sushil K.V., Gupta V., Crowston J.G. Neuroprotection in glaucoma. Indian J Ophthalmol 2011; 59(Suppl 1):S102-S113.

15. Barkana Y., Belkin M. Neuroprotection in ophthalmology: a review. Brain Res Bull 2004; 62:447-453.

16. Howell G.R., Libby R.T., Jakobs T.C., Smith R.S., Phalan F.C., Barter J.W., Barbay J.M., Marchant J.K., Mahesh N., Porciatti V., Whitmore A.V., Masland R.H., John S.W. Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. J Cell Biol 2007; 179(7):1523-1537.

17. Liu M., Guo L., Salt T.E., Cordeiro M.F. Dendritic changes in rat visual pathway associated with experimental ocular hypertension. Curr Eye Res 2014; 39(9):953-963. doi: 10.3109/02713683. 2014.884594. Epub 2014 Apr 22.

18. Rosen A.M., Stevens B. The role of the classical complement cascade in synapse loss during development and glaucoma. Adv Exp Med Biol 2010; 703:75-93.

19. Goni F.J. Glaucoma Progression Spanish Study Group. Estudio multicentrico Espanol Progress II sobre ritmos de progresion del campo visual en el glaucoma: resultados preliminares de la fase retrospectiva. Oral presentation at the 7th Spanish Glaucoma Society meeting, Alicante. Spain. 2012.

20. The AGIS Investigators. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol 2000; 130:429-440.

21. Collaborative Normal-Tension Glaucoma Study Group. The effectiveness of intraocular pressure reduction in the treatment of normaltension glaucoma. Am J Ophthalmol 1998; 126(4):498-505.

22. Heijl A., Leske M.C., Bengtsson B., Hyman L., Hussein M. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 2002; 120:1268-1279.

23. Janz N.K., Wren P.A., Lichter P.R., Musch D.C., Gillespie B.W, Guire K.E., Mills R.P. CIGTS Study Group. The Collaborative Initial Glaucoma Treatment Study: interim quality of life findings after initial medical or surgical treatment of glaucoma. Ophthalmology 2001; 108(11):1954-1965.

24. Miglior S., Pfeiffer N., Torri V., Zeyen T., Cunha-Vaz J., Adamsons I. Predictive factors for open-angle glaucoma among patients with ocular hypertension in the European Glaucoma Prevention Study. Ophthalmology 2007; 114(1):3-9.

25. Garway-Heath D.F., Crabb D.P., Bunce C., Lascaratos G., Amalfitano F., Anand N., Azuara-Blanco A., Bourne R.R., Broadway D.C., Cunliffe I.A., Diamond J.P., Fraser S.G., Ho T.A., Martin K.R., Mc Naught A.I., Negi A., Patel K., Russell R.A., Spry P.G., Suzuki K., White E.T., Wormald R.P., Xing W., Zeyen T.G. Latanoprost for open-angle glaucoma (UKGTS): a randomised, multicentre, placebo-controlled trial. Lancet 2015; 385(9975):1295-1304. doi: 10.1016/S0140-6736(14)62111-5. Epub 2014 Dec 19.

26. Leske M.C., Heij A., Hyman L., Bengtsson B., Dong L., Yang Z. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology 2007; 114:1965-1972.

27. Gordon M.O., Beiser J.A., Brandt J.D. et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 2002; 120: 714-720. discussion 829-830.

28. Ernest P., Viechtbauer W., Schouten J. et al. The influence of the assessment method on the incidence of visual field progression in glaucoma: a network metaanalysis. Acta Ophthalmol 2012; 90:10-19.

29. Cordeiro M.F., Guo L., Luong V., Harding G., Wang W., Jones H.E., Moss S.E., Sillito A.M., Fitzke F.W. Real-time imaging of single nerve cell apoptosis in retinal neurodegeneration. Proc Natl Acad Sci U. S. A. 2004; 101(36):13352-13356.

30. Heijl A., Leske M.C., Bengtsson B., Hyman L., Hussein M. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 2002; 120(10):1268-1279.

31. Mc Kean-Cowdin R., Wang Y., Wu J., Azen S.P., Varma R. Impact of visual field loss on health-related quality of life in glaucoma: the Los Angeles Latino Eye Study. Ophthalmology 2008; 115(6): 941-948.e1

32. Mozaffarieh M., Flammer J. Ocular blood flow and glaucomatous optic neuropathy. Springer Science & Business Media Publ., 2009, 105 р.

33. Chang E.E., Goldberg J.L. Glaucoma 2.0: neuroprotection, neuroregeneration, neuroenhancement. Ophthalmology 2012; 119(5): 979-986. doi: 10.1016/j.ophtha.2011.11.003. Epub 2012 Feb 18.

34. Guo L., Moss S.E., Alexander R.A., Ali R.R., Fitzke F.W., Cordeiro M.F. Retinal ganglion cell apoptosis in glaucoma is related to intraocular pressure and IOP-induced effects on extracellular matrix. Invest Ophthalmol Vis Sci 2005; 46(1):175-182.

35. Hattenhauer M.G., Johnson D.H., Ing H.H, Herman D.C., Hodge D.O., Yawn B.P., Butterfield L.C., Gray D.T. The probability of blindness from open-angle glaucoma. Ophthalmology 1998; 105(11):2099-2104.

36. Gonsson B., Krieglstein G. Primary open-angle glaucoma: differences in international treatment patterns and costs. Oxford: Isis Medical Media Ltd. 1999; 120 p.

37. Blica S., Saunte E. Timolol maleate in the treatment of glaucoma simplex and glaucoma capsulare. A three-year follow up study. Acta Ophthalmol (Copenh) 1982; 60(6):967-976.

38. Covert D., Robin A.L. Adjunctive glaucoma therapy use associated with travoprost, bimatoprost, and latanoprost. Curr Med Res Opin 2006; 22(5):971-976.

39. Ehrnrooth P., Lehto I., Puska P., Laatikainen L. Long-term outcome of trabeculectomy in terms of intraocular pressure. Acta Ophthalmol Scand 2002; 80(3):267-271.

40. Mwanza J.C., Budenz D.L., Godfrey D.G., Neelakantan A., Sayyad F.E., Chang R.T., Lee R.K. Diagnostic performance of optical coherence tomography ganglion cell-inner plexiform layer thickness measurements in early glaucoma. Ophthalmology 2014; 121(4):849-854.

41. Sakamoto A., Hangai M., Nukada M., Nakanishi H., Mori S., Kotera Y., Inoue R, Yoshimura N. Three-dimensional imaging of the macular retinal nerve fiber layer in glaucoma with spectraldomain optical coherence tomography. Invest Ophthalmol Vis Sci 2010; 51(10):5062-5070. doi: 10.1167/iovs.09-4954. Epub 2010 May 12.

42. Sato S., Hirooka K., Baba T., Tenkumo K., Nitta E., Shiraga F. Correlation between the ganglion cell-inner plexiform layer thickness measured with cirrus HD-OCT and macular visual field sensitivity measured with microperimetry. Invest Ophthalmol Vis Sci 2013; 54(4):3046-3051.

43. Cho J.W., Sung K.R., Lee S., Yun S.C., Kang S.Y., Choi J., Na J.H., Lee Y., Kook M.S. Relationship between visual field sensitivity and macular ganglion cell complex thickness as measured by spectraldomain optical coherence tomography. Invest Ophthalmol Vis Sci 2010; 51(12):6401-6407. doi: 10.1167/iovs.09-5035. Epub 2010 Jul 14.

44. Vincent A., Shetty R., Devi S.A., Kurian M.K., Balu R., Shetty B. Functional involvement of cone photoreceptors in advanced glaucoma: a multifocal electroretinogram study. Doc Ophthalmol 2010; 121(1):21-27. doi: 10.1007/s10633-010-9227-0. Epub 2010 Mar 25.

45. Fan N., Huang N., Lam D.S., Leung C.K. Measurement of photoreceptor layer in glaucoma: a spectral-domain optical coherence tomography study. J Ophthalmol 2011; Article ID 264803.

46. Kendell K.R., Quigley H.A., Kerrigan L.A., Pease M.E., Quigley E.N. Primary open-angle glaucoma is not associated with photoreceptor loss. Invest Ophthalmol Vis Sci 1995; 36: 200-205.

47. Guo L., Normando E.M., Nizari S., Lara D., Cordeiro M.F. Tracking longitudinal retinal changes in experimental ocular hypertension using the cSLO and spectral domain-OCT. Invest Ophthalmol Vis Sci 2010; 51: 6504-6513.

48. Fern ndez-S nchez L., de Sevilla M ller L.P., Brecha N.C., Cuenca N. Loss of outer retinal neurons and circuitry alterations in the DBA/2J mouse. Invest Ophthalmol Vis Sci 2014; 55(9):6059-6072. doi: 10.1167/iovs.14-14421.

49. Vecino Е., Rodriguez F.D., Pereiro X., Sharma S.C. Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res 2016; 51:1-40.

50. Chen Q., Huang S., Ma Q., Lin H., Pan M., Liu X., Lu F., Shen M. Ultra-high resolution profiles of macular intraretinal layer thicknesses and associationswith visual field defects in primary openangle glaucoma. Sci Rep 2017; 7:41100.

51. Mori M., Metzger D., Garnier J-M., Chambon P., Mark M. Sitespecific somatic mutagenesis in the retinal pigment epithelium. Invest Ophthalmol Vis Sci 2002; 43:1384-1388.

52. Harazny J., Scholz M., Buder T., Lausen B., Kremers J. Electrophysiological deficits in the retina of the DBA/2J mouse. Doc Ophthalmol 2009; 119:181-197.

53. Heiduschka P., Julien S., Schuettauf F., Schnichels S. Loss of retinal function in aged DBA/2J mice-new insights into retinal neurodegeneration. Exp Eye Res 2010; 91:779-783.

54. Nork T.M., Ver Hoeve J.N., Poulsen G.L., Nickells R.W., Davis M.D., Weber A.J., Vaegan Sarks S.H., Lemley H.L., Millecchia L.L. Swelling and loss of photoreceptors in chronic human and experimental glaucomas. Arch Ophthalmol 2000; 118(2):235-245.

55. Kanis M.J., Lemij H.G., Berendschot T.T., van de Kraats J., van Norren D. Foveal cone photoreceptor involvement in primary open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol 2010; 248(7):999-1006. doi: 10.1007/s00417-010-1331-z. Epub 2010 Mar 7.

56. Potsaid B. et al. Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. Opt Express 2008; 16: 15149-15169.

57. Wang Y. et al. Quantitative analysis of the intraretinal layers and optic nerve head using ultra-high resolution optical coherence tomography. J Biomed Opt 2012; 17, 066013.

58. Chen Q., Huang S., Ma Q., Lin H., Pan M., Liu X., Lu F., Shen M. Ultra-high resolution profiles of macular intraretinal layer thicknesses and associations with visual fielddefects in primary openangle glaucoma. Sci Rep 2017; 7:41100.

59. Cho J.W. et al. Relationship between visual field sensitivity and macular ganglion cell complex thickness as measured by spectraldomain optical coherence tomography. Invest Ophthalmol Vis Sci 2010; 51: 6401-6407.

60. Sato S. et al. Correlation between the ganglion cell-inner plexiform layer thickness measured with cirrus HD-OCT and macular visual field sensitivity measured with microperimetry. Invest Ophthalmol Vis Sci 2013; 54: 3046-3051.

61. Reichenbach A., Bringmann A. New functions of M ller cells. Glia 2013; 61(5):651-678.

62. Sanderson J., Dartt D. A., Trinkaus-Randall V. et al. Purines in the eye: recent evidence for the physiological and pathological role of purines in the RPE, retinal neurons, astrocytes, M ller cells, lens, trabecular meshwork, cornea and lacrimal gland. Exper Eye Res 2014; 127:270-279.

63. Labin A.M., Ribak E.N. Retinal glial cells enhance human vision acuity. Phys Rev Lett 2010; 104, 158102.

64. Bringmann A., Pannicke T., Grosche J. et al. M ller cells in the healthy and diseased retina. Prog Retin Eye Res 2006; 25(4): 397-424.

65. Seitz R., Ohlmann A., Tamm E. R. The role of M ller glia and microglia in glaucoma. Cell and Tissue Research 2013; 353(2): 339-345.

66. Francke M., Makarov F., Kacza J. et al. Retinal pigment epithelium melanin granules are phagocytozed by M ller glial cells in experimental retinal detachment. J Neurocytology 2001; 30(2):131-136.

67. Kim J.H., Kim J.H., Park J.A., Lee S.W., Kim W.J., Yu Y.S., Kim K.W. Bloodneural barrier: intercellular communication at glio-vascular interface. J Biochem Mol Biol 2006; 39, 339e345.

68. Koehler R.C., Roman R.J., Harder D.R. Astrocytes and the regulation of cerebral blood flow. Trends in Neurosciences 2009; 32(3):160-169.

69. Aloisi F. Immune function of microglia. Glia 2001; 36(2):165-179. doi: 10.1002/glia.1106.

70. Ram rez A.I., Salazar J.J., de Hoz R., Rojas B., Gallego B.I., SalinasNavarro M., Alarc n-Mart nez L., Ort n-Mart nez A., Avil sTrigueros M., Vidal-Sanz M., Trivi o A., Ram rez J.M. Quantification of the effect of different levels of IOP in the astroglia of the rat retina ipsilateral and contralateral to experimental glaucoma. Invest Ophthalmol Vis Sci 2010; 51(11):5690-5696. doi: 10.1167/ iovs.10-5248. Epub 2010 Jun 10.

71. Hernandez M.R. The optic nerve head in glaucoma: role of astrocytes in tissue remodeling. Prog Retin Eye Res 2000; 19(3): 297-321.

72. Penn J.S., Madan A., Caldwell R.B., Bartoli M., Caldwell R.W., Hartnett M.E. Vascular endothelial growth factor in eye disease. Prog Retin Eye Res 2008; 27(4):331-371.

73. Peng L., Parpura V., Verkhratsky A. Neuroglia as a central element of neurological diseases: an underappreciated target for therapeutic intervention. Curr Neuropharmacology 2014; 12(4):303-307.

74. Bringmann A., Reichenbach A. Role of Muller cells in retinal degenerations. Frontiers in Bioscience 2001; 6:E72-E92.

75. Giebel S.J., Menicucci G., McGuire P.G., Das A. Мatrix metalloproteinases in early diabetic retinopathy and their rolein alternation of the blood-retinal barrier. Laboratory Investigation 2005; 85(5):597-607.

76. Goureau O., Rґegnier-Ricard F., Courtois Y. Requirement for nitric oxide in retinal neuronal cell death induced by activated Muller glial cells. J Neurochemistry 1999; 72(6):2506-2515.

77. Naskar R., Vorwerk С.К., Dreyer E.B. Concurrent downregulation of a glutamate transporter and receptor in glaucoma. Invest Ophthalmol Vis Sci 2000; 41(7):1940-1944.

78. de Hoz R., Rojas B., Ram rez A.I., Salazar J.J., Gallego B.I., Trivi o A., Ram rez J.M. Retinal macroglial responses in health and disease. Biomed Res Int 2016; 2016:2954721.

79. Bringmann A., Iandiev I., Pannicke T., Wurm A., Hollborn M., Wiedemann P., Osborne N.N., Reichenbach A. Cellular signaling and factors involved in M ller cell gliosis: neuroprotective and detrimental effects. Prog Retin Eye Res 2009; 28(6):423-451. doi: 10.1016/j.preteyeres.2009.07.001. Epub 2009 Aug 4.

80. Baltmr A., Duggan J., Nizari S., Salt T.E.,Cordeiro M.F. Neuroprotection in glaucoma — Is there a future role? Exp Eye Res 2010; 91(5):554-566.

81. Levin L.A. Translational pharmacology in glaucoma neuroprotection. Handb Exp Pharmacol 2016. Epub ahead of print.

82. Weinreb R.N., Goldberg I. Recent advances in glaucoma neuroprotection. International Glaucoma Review CME Supplement 2007; 9-3:30-31.

83. Panda S., Jonas J.B. Decreased photoreceptor count in human eyes with secondary angle-closure glaucoma. Invest Ophthalmol Vis Sci 1992; 33:2532-2536.

84. Oberheim N.A., Takano T., Han X. et al. Uniquely hominid features of adult human astrocytes. J Neuroscience 2009; 29(10): 3276-3287.


Дополнительные файлы

Для цитирования: Лоскутов И.А., Саверская Е.Н., Лоскутова Е.И. РЕТИНОПРОТЕКЦИЯ КАК ТЕРАПЕВТИЧЕСКАЯ СТРАТЕГИЯ ГЛАУКОМЫ: ОБЗОР ИСТОРИЧЕСКИХ И СОВРЕМЕННЫХ МИРОВЫХ ТЕНДЕНЦИЙ. Национальный журнал глаукома. 2017;16(4):86-97.

For citation: Loskutov I.A., Saverskaya E.N., Loskutova E.I. A REVIEW OF THE HISTORICAL CONTEXT AND EMERGING TRENDS IN RELATION TO RETINOPROTECTION AS A THERAPEUTIC STRATEGY FOR GLAUCOMA. National Journal glaucoma. 2017;16(4):86-97. (In Russ.)

Просмотров: 94

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)