Preview

Национальный журнал Глаукома

Расширенный поиск

СОСУДИСТАЯ ТЕОРИЯ ПАТОГЕНЕЗА ГЛАУКОМНОЙ ОПТИКОНЕЙРОПАТИИ: ФИЗИОЛОГИЧЕСКОЕ И ПАТОФИЗИОЛОГИЧЕСКОЕ ОБОСНОВАНИЕ. ЧАСТЬ 2

Полный текст:

Аннотация

В обзоре рассмотрены некоторые физиологические механизмы регуляции глазного кровотока и их нарушения в аспекте развития глаукомной оптиконейропатии. Приводится характеристика перфузионного глазного давления, его связи с внутриглазным и артериальным давлением с акцентом на роль их циркадианных колебаний. В литературе имеется много данных о том, что развитие глаукомы связано со снижением перфузионного давления. Освещены проблемы ауторегуляции кровотока глаза, а также роли нейрососудистого взаимодействия в регуляции глазного кровотока. Особое внимание уделено ретинальному и хориоидальному кровотоку в сравнительном аспекте и с акцентом на регуляцию этих двух источников кровоснабжения сетчатки и зрительного нерва. Рассмотрены такие фундаментальные причины нарушения глазного кровотока при глаукоме, как эндотелиальная дисфункция и первичная сосудистая дисрегуляция. Подчеркивается многообразие факторов, участвующих в поддержании постоянства глазного кровотока, что делает проблематичным выбор терапии рассмотренных расстройств. Рассмотрены основные механизмы, поддерживающие постоянство ауторегуляции глазного кровотока, а также причины нарушения нейроваскулярного взаимодействия. Таким образом, несмотря на присутствие всех классических механизмов регуляции глазного кровотока, физиология и патофизиология глазной гемоперфузии в значительной степени уникальна.

Об авторе

Н. И. Курышева
Центр офтальмологии ФМБА России, Клиническая больница № 86
Россия

Курышева Наталия Ивановна, доктор медицинских наук, профессор, руководитель консультативно-диагностического отдела

123098, Москва, ул. Гамалеи, 15



Список литературы

1. Graham S.L., Drance S.M., Wijsman K. Ambulatory blood pressure monitoring in glaucoma. The nocturnal dip Ophthalmology 1995; 102:61-69. doi:10.1016/S0161-6420(95)31053-6.

2. Fechtner R.D., Weinreb R.N. Mechanisms of optic nerve damage in primary open-angle glaucoma. Surv Ophthalmol 1994; 39: 23-42. doi:10.1016/s0039-6257(05)80042-6.

3. Harris A., Spaeth G., Wilson R. Nocturnal ophthalmic arterial hemodynamics in primary open-angle glaucoma. J Glaucoma 1997; 6:170-174. doi:10.1097/00061198-199706000-00006.

4. Flammer J., Org l S., Costa V.P. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 2002; 21:359-393. doi:10.1016/ S1350-9462(02)00008-3.

5. Abegao Pinto L., Vandewalle E., De Clerck E., Marques-Neves C., Stalmans I. Lack of spontaneous venous pulsation: possible risk indicator in normal tension glaucoma? Acta Ophthalmol 2013; 91:514-520. doi:10.1111/j.1755-3768.2012.02472.x.

6. Kurysheva N.I., Parshunina O.A., Shatalova E.O., Kiseleva T.N. Value of structural and hemodynamic parameters for the early detection of primary open-angle glaucoma. Curr Eye Res 2016; 24:1-7. doi:10.1080/02713683.2016.1184281.

7. Attwell D., Buchan A.M., Charpak S., Lauritzen M., Macvicar B.A., Newman E.A. Glial and neuronal control of brain blood flow. Nature 2010; 468:232-243. doi:10.1038/nature09613.

8. Waldmann N., Kochkorov A., Orgul S., Gugleta K. The prognostic value of retinal vessel analysis in primary open-angle glaucoma. Acta Ophthalmologica 2016: 1-7. doi: 10.1111/aos.13014.

9. Hayreh S.S., Revie I.H., Edwards J. Vasogenic origin of visual field defects and optic nerve changes in glaucoma. Br J Ophthalmol 1970; 54:461-472. doi: 10.1136/bjo.54.7.461.

10. Yaoeda K., Shirakashi M., Fukushima A. Relationship between optic nerve head microcirculation and visual field loss in glaucoma. Acta Ophthalmologica Scand 2003; 81:253-259. doi: 10.1034/ j.1600-0420.2003.00073.x.

11. Zeitz O., Galambos P., Wagenfeld L. Glaucoma progression is associated with decreased blood flow velocities in the short posterior ciliary artery. Br J Ophthalmol 2006; 90:1245-1248. doi:10.1136/ bjo.2006.093633.

12. Plange N., Kaup M., Arend O. Asymmetric visual field loss and retrobulbar haemodynamics in primary open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol 2006; 244: 978-983. doi: 10.1007/ s00417-005-0227-9.

13. Zeitz O., Galambos P., Wagenfeld L. Glaucoma progression is associated with decreased blood flow velocities in the short posterior ciliary artery. Br J Ophthalmol 2006; 90:1245-1248. doi:10.1136/ bjo.2006.093633.

14. Caprioli J., Coleman A.L. Blood Flow in Glaucoma Discussion. Blood pressure, perfusion pressure, and glaucoma. Am J Ophthalmol 2010; 149(5):704-12. doi: 10.1016/j.ajo.2010.01.018.

15. Kiel J.W., van Heuven W.A. Ocular perfusion pressure and choroidal blood flow in the rabbit. Invest Ophthalmol Vis Sci 1995; 36:579-585.

16. Bill A. Physiological aspects of the circulation in the optic nerve. Glaucoma: conceptions of a disease 1978; 97-103. doi:10.1016/ 0304-3940(78)90055-1.

17. Buys Y.M., Alasbali T., Jin Y.P. Effect of sleeping in a head-up position on intraocular pressure in patients with glaucoma. Ophthalmology 2010; 117:1348-1351. doi: 10.1016/j.ophtha. 2009.11.015.

18. Mansouri K., Leite M.T., Weinreb R.N. 24-hour ocular perfusion pressure in glaucoma patients. Br J Ophthalmol 2011; 95:11751176. doi:10.1136/bjophthalmol-2011-300160.

19. Tung J.D., Tafreshi A., Weinreb R.N. Twenty-four-hour effects of bimatoprost 0.01% monotherapy on intraocular pressure and ocular perfusion pressure. BMJ 2012; 23:2. doi:10.1136/bmjopen2012-001106.

20. Lee J.Y., Yoo C., Kim Y.Y. The efect of lateral decubitus position on intraocular pressure in patients with untreated open-angle glaucoma. Am J Ophthalmol 2013; 155:329-335. doi:10.1016/j. ajo.2012.08.003.

21. Bill A. Circulation in the eye. The handbook of physiology: cardiovascular system 1984; 1001-1034. doi: 10.1016/0014-4835(73) 90249-2.

22. Glucksberg M.R., Dunn R. Direct measurement of retinal microvascular pressures in the live, anesthetized cat. Microvasc Res 1993; 45:158-165. doi: 10.1006/mvre.1993.1015.

23. Morgan W., Lind C., Kain S., Fatehee N., Bala A., Yu D. Retinal vein pulsation is in phase with intracranial pressure and not intraocular pressure. Invest Ophthalmology Vis Sci 2012; 53:4676-4681. doi:10.1167/iovs.12-9837.

24. Bill A. Aspects of regulation of the uveal venous pressure in rabbits. Exp Eye Res 1962; 1:193-199. doi: 10.1016/s0014-4835(62) 80001-3.

25. Reitsamer H.A., Kiel J.W. A rabbit model to study orbital venous pressure, intraocular pressure, and ocular hemodynamics simultaneously. Invest Ophthalmol Vis Sci 2002; 43:3728-3734.

26. Halberg F. Chronobiology. Annu Rev Physiol 1969; 31:675-725. doi: 10.1146/annurev.ph.31.030169.003331.

27. Liu J.H., Kripke D.F., Hoffman R.E. Elevation of human intraocular pressure at night under moderate illumination. Invest Ophthalmol Vis Sci 1999; 40(10):2439-2442.

28. Costa V.P., Jimenez-Roman J., Carrasco F.G. Twenty-four-hour ocular pressure in primary open angle glaucoma. Br J Ophthalmol 2010; 94:1291-1294. doi: 10.1136/bjo.2009.167569.

29. Brown B., Morris P. et al. Fluctuations in intraocular pressure with sleep: I. Time course of IO increase after the onset of sleep. Ophthalmic Physiol Opt 1988; 8(3):246-248. doi: 10.1016/02755408(88)90174-3.

30. Wildsoet C., Eyeson-Annan M., Brown B., Swann P.G., Fletcher T. Investigation of parameters influencing intraocular pressure increases during sleep. Ophthalmic Physiol Opt 1993; 13(4): 357-365. doi:10.1111/j.1475-1313.1993.tb00491.x.

31. Buguet A., Py P., Romanet J.P. 24-hour (nyctohemeral) and sleeprelated variations of intraocular pressure in healthy white individuals. Am J Ophthalmol 1994; 117(3):342-347. doi: 10.1016/ s0002-9394(14)73143-5.

32. Wildsoet C., Eyeson-Annan M., Brown B., Swann P.G., Fletcher T. Investigation of parameters influencing intraocular pressure increases during sleep. Ophthalmic Physiol Opt 1993; 13(4): 357-365.

33. Hayreh S.S. Ischemic Optic Neuropathies. Springer, 2011; 456 р. doi: 10.1007/978-3-642-11852-4.

34. Tielsch J.M., Katz J., Sommer A. Hypertension, perfusion pressure, and primary open-angle glaucoma. A population-based assessment. Arch Ophthalmol 1995; 113:216-221. doi: 10.1001/ archopht.1995.01100020100038.

35. Quigley H.A., West S.K., Rodriguez J., Munoz B., Klein R., Snyder R. The prevalence of glaucoma in a population-based study of Hispanic subjects: Proyecto VER. Arch Ophthalmol 2001; 119:18191826. doi: 10.1001/archopht.119.12.1819.

36. Memarzadeh F., Ying-Lai M., Chung J. Blood pressure, perfusion pressure, and open-angle glaucoma: the Los Angeles Latino Eye Study. Invest Ophthalmol Vis Sci 2010; 51:2872-2877. doi: 10.1167/iovs.08-2956.

37. Leske M.C. Ocular perfusion pressure and glaucoma: clinical trial and epidemiologic findings. Curr Opin Ophthalmol 2009; 20:73-78. doi: 10.1097/icu.0b013e32831eef82.

38. Costa V.P., Arcieri E.S., Harris A. Blood pressure and glaucoma. Br J Ophthalmol 2009; 93:1276-1282. doi: 10.1136/bjo.2008. 149047.

39. Zheng Y., Wong T.Y., Mitchell P. Distribution of ocular perfusion pressure and its relationship with open-angle glaucoma: the Singapore malay eye study. Invest Ophthalmol Vis Sci 2010; 51:3399-3404. doi: 10.1167/iovs.09-4867.

40. Xu L., Wang Y.X., Jonas J.B. Ocular perfusion pressure and glaucoma: the Beijing Eye Study. Eye (Lond) 2009; 23:734-736. doi: 10.1038/eye.2008.342.

41. Grieshaber M.C., Mozaffarieh M., Flammer J. What is the link between vascular dysregulation and glaucoma? Surv Ophthalmol 2007; 52(2):144-154. doi: 10.1016/j.survophthal.2007.08.010.

42. Nicolela M.T. Clinical clues of vascular dysregulation and its association with glaucoma. Can J Ophthalmol 2008; 43(3):337–341. doi: 10.1139/i08-063.

43. Galassi F., Giambene B., Varriale R. Systemic dysregulation and retrobulbar hemodynamics in normal-tension glaucoma. Invest Ophthalmol Vis Sci 2011; 5:4467-4471. doi: 10.1167/ iovs.10-6710.

44. Fuchsjager-Mayrl G., Georgopoulos M., Hommer A. Effect of dorzolamide and timolol on ocular blood flow relationship in patients with primary open-angle glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci 2010; 51:1289–1296. doi: 10.1167/ iovs.09-3827.

45. Deokule S., Weinreb R.N. Relationships among systemic blood pressure, intraocular pressure, and open-angle glaucoma. Can J Ophthalmol 2008; 43:302-307. doi: http://dx.doi.org/10.3129/ i08-061.

46. Gherghel D., Orgul S., Gugleta K. Relationship between ocular perfusion pressure and retrobulbar blood flow in patients with glaucoma with progressive damage. Am J Ophthalmol 2000; 130:597-605. doi: 10.1016/s0002-9394(00)00766-2.

47. Курышева Н.И., Маслова Е.В., Трубилина А.В., Фомин А.В. ОКТ-ангиография и цветовое допплеровское картирование в исследовании гемоперфузии сетчатки и зрительного нерва при глаукоме. Офтальмология 2016; 13(2):102-110.

48. Курышева Н.И. Глазное перфузионное давление и первичная сосудистая дисрегуляция у больных глаукомой нормального давления. Глаукома 2011; 3:11-17.

49. Costa V., Harris A., Anderson D., Stodtmeister R., Cremasco F., Kergoat H., Lovasik J., Stalmans I., Zeitz O., Lanzl I., Gugleta K., Schmetterer L. Ocular perfusion pressure in glaucoma. Acta Ophthalmol 2014; 92:252-266. doi: 10.1111/aos.12298.

50. Sung K., Lee S., Park S., Choi J., Kim S., Yun S., Kang S., Cho J., Kook M. Twenty-four hour ocular perfusion pressure fluctuation and risk of normal-tension glaucoma progression. Invest Ophthalmol Vis Sci 2009; 50:5266-5274. doi: 10.1167/iovs.09-3716.

51. Choi J., Jeong J., Cho H.S. Effect of nocturnal blood pressure reduction on circadian fluctuation of mean ocular perfusion pressure: a risk factor for normal tension glaucoma. Invest Ophthalmol Vis Sci 2006; 47:831-836. doi: 10.1167/iovs.05-1053.

52. Choi J., Kim K.H., Jeong J. Circadian fluctuation of mean ocular perfusion pressure is a consistent risk factor for normaltension glaucoma. Invest Ophthalmol Vis Sci 2007; 48(2):104-111. doi: 10.1167/iovs.06-0615.

53. Choi W., Baumann B., Liu J.J., Clermont A.C., Feener E.P., Duker J.S., Fujimoto J.G. Measurement of pulsatile total blood flow in the human and rat retina with ultrahigh speed spectral/ Fourier domain OCT. Biomed Opt Express 2012; 3:1047-1061. doi: 10.1364/boe.3.001047.

54. Lange N., Kaup M., Daneljan L., Predel H.G., Remky A., Arend O. 24-h blood pressure monitoring in normal tension glaucoma: night-time blood pressure variability. J Hum Hypertens 2006; 20:137-142. doi: 10.1038/sj.jhh.1001959.

55. Nouri-Mahdavi K., Hofman D., Coleman A.L. Predictive factors for glaucomatous visual field progression in the Advanced Glaucoma Intervention Study. Ophthalmology 2004; 111:1627-1635. doi: 10.1016/j.ophtha.2004.02.017.

56. Hughes E., Spry P., Diamond J. 24-hour monitoring of intraocular pressure in glaucoma management: a retrospective review. J Glaucoma 2003; 12(3):232.

57. Collignon N., Dewe W., Guillaume S., Collignon-Brach J. Ambulatory blood pressure monitoring in glaucoma patients. The nocturnal systolic dip and its relationship with disease progression. Int Ophthalmol 1998; 22:19-25. doi: 10.1023/a:1006113109864.

58. Tokunaga T., Kashiwagi K., Tsumura T., Taguchi K., Tsukahara S. Association between nocturnal blood pressure reduction and progression of visual field defect in patients with primary open-angle glaucoma or normal-tension glaucoma. Jpn J Ophthalmol 2004; 48:380–385. doi: 10.1007/s10384-003-0071-6.

59. Schmidl D., Garhofer G., Schmettere L. The complex interaction between ocular perfusion pressure and ocular blood flow — Relevance for glaucoma. Exp Eye Res 2011; 93:141-155. doi: 10.1016/j. exer.2010.09.002.

60. Liang Y., Downs J.C., Fortune B. Impact of systemic blood pressure on the relationship between intraocular pressure and blood flow in the optic nerve head of nonhuman primates. Invest Ophthalmol Vis Sci 2009; 50:2154-2160. doi: 10.1167/iovs.08-2882.

61. Курышева Н.И. Глазная гемоперфузия и глаукома. М.: Гринлайт, 2014; 128 с.

62. Topouzis F., Coleman A.L., Harris A. Association of blood pressure status with the optic disk structure in non-glaucoma subjects: the Thessaloniki Eye Study. Am J Ophthalmol 2006; 142(1):60-67. doi:10.1016/j.ajo.2006.02.055.

63. Boltz A., Schmidl D., Weigert G., Lasta M., Pemp B., Resch H., Garhofer G., Fuchsjager-Mayrl G., Schmetterer L. Effect of latanoprost on choroidal blood flow regulation in healthy subjects. Invest Ophthalmol Vis Sci 2011; 52:4410-4415. doi: 10.1167/iovs.117263.

64. Schmidl D., Garhofer G., Schmettere L. The complex interaction between ocular perfusion pressure and ocular blood flow — Relevance for glaucoma. Exp Eye Res 2011; 93:141-155. doi: 10.1016/j. exer.2010.09.002.

65. Galambos P., Vafiadis J., Vilchez S.E. Compromised autoregulatory control of ocular hemodynamics in glaucoma patients after postural change. Ophthalmology 2006; 113:1832–1836. doi: 10.1016/j. ophtha.2006.05.030.

66. Feke G.T., Pasquale L.R. Retinal blood flow response to posture change in glaucoma patients compared with healthy subjects. Ophthalmology 2008; 115(2):246-252. doi: 10.1016/j.ophtha. 2007.04.055.

67. Portmann N., Gugleta K., Kochkorov A. Choroidal blood flow response to isometric exercise in glaucoma patients and patients with ocular hypertension. Invest Ophthalmol Vis Sci 2011; 52:7068–7073. doi: 10.1167/iovs.11-7758.

68. Alm A., Bill A. The oxygen supply to the retina, II. Effects of high intraocular pressure and of increased arterial carbon dioxide tension on uveal and retinal blood flow in cats. A study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Acta Physiol Scand 1972; 84: 306-319. doi: 10.1111/j.1748-1716.1972.tb05182.x.

69. Liang Y., Downs J.C., Fortune B., Cull G., Cioffi G.A., Wang L. Impact of systemic blood pressure on the relationship between intraocular pressure and blood flow in the optic nerve head of nonhuman primates. Invest Ophthalmol Vis Sci 2009; 50: 2154-2160. doi: 10.1167/iovs.08-2882.

70. Weigert G., Findl O., Luksch A. Effects of moderate changes in intraocular pressure on ocular hemodynamics in patients with primary open-angle glaucoma and healthy controls. Ophthalmology 2005; 112:1337–1342. doi: 10.1016/j.ophtha.2005.03.016.

71. Riva C.E., Hero M., Titze P., Petrig B. Autoregulation of human optic nerve head blood flow in response to acute changes in ocular perfusion pressure. Graefes Arch Clin Exp Ophthalmol 1997; 235:618-626.

72. Riva C.E., Logean E., Falsini B. Visually evoked hemodynamical response and assessment of neurovascular coupling in the optic nerve and retina. Prog Retin Eye Res 2005; 24:183-215. doi: 10.1007/bf00946937.

73. Kiel J.W. Choroidal myogenic autoregulation and intraocular pressure. Exp Eye Res 1994; 58:529–543. doi: 10.1006/exer.1994.1047.

74. Org l S., Meyer P., Cioffi G.A. Physiology of blood flow regulation and mechanisms involved in optic nerve perfusion. J Glaucoma 1995; 4:427-443. doi: 10.1097/00061198-199512000-00009.

75. Wray S. Smooth muscle intracellular pH: measurement, regulation, and function. Am J Physiol 1980; 8(3):197-206. doi: 10.1007/ s004240100562.

76. Wei E.P., Ellis E.F., Kontos H.A. Role of prostaglandins in pial arteriolar response to CO2 and hypoxia. Am J Physiol 1980; 238(2):226-230.

77. Anderson D.R. Glaucoma, capillaries and pericytes. Blood flow regulation. Ophthalmologica 1996; 210(5):257-262. doi: 10.1159/ 000310722.

78. Osol G., Halpern W. Myogenic properties of cerebral blood vessels from normotensive and hypertensive rats. Am J Physiol 1985; 249(5):914-921.

79. Harder D.R., Madden J.A. Cellular mechanism of force development in cat middle cerebral artery by reduced pCO2. Pflugers Arch 1985; 403(4):402-406. doi: 10.1007/bf00589253.

80. Attwell D., Buchan A.M., Charpak S., Lauritzen M., Macvicar B.A., Newman E.A. Glial and neuronal control of brain blood flow. Nature 2010; 468:232-243. doi: 10.1038/nature09613.

81. Garhofer G., Zawinka C., Resch H., Huemer K.H., Schmetterer L., Dorner G.T.: Response of retinal vessel diameters to flicker stimulation in patients with early open-angle glaucoma. J Glaucoma 2004; 13:340-344. doi: 10.1097/00061198-200408000-00013.

82. Kondo M., Wang L., Bill A. The role of nitric oxide in hyperemic response to flicker in the retina and optic nerve in cats. Acta Ophthalmol Scand 1997; 75(3):323-325. doi: 10.1111/j.16000420.1997.tb00762.x.

83. Ferrari-Dileo G., Davis E., Anderson D.R. Glaucoma, capillaries and pericytes. Ophthalmologica 1996; 210(5):269-275. doi: 10.1159/000310724.

84. Shibata M., Sugiyama T., Kurimoto T., Oku H., Okuno T., Kobayashi T., Ikeda T. Involvement of glial cells in the autoregulation of optic nerve head blood flow in rabbits. Invest Ophthalmol Vis Sci 2012; 53:3726-3732. doi: 10.1167/iovs.11-9316.

85. Gugleta K., Kochkorov A., Waldmann N., Polunina A., Katamay R., Flammer J., Orgul S. Dynamics of retinal vessel response to flicker light in glaucoma patients and ocular hypertensives. Graefes Arch Clin Exp Ophthalmol 2012; 250:589-594. doi: 10.1007/s00417011-1842-2.

86. Resch H., Garhofer G., Fuchsja ger-Mayrl G., Hommer A., Schmetterer L. Endothelial dysfunction in glaucoma. Acta Ophthalmologica 2009; 87:4-12. doi: 10.1111/j.1755-3768.2007.01167.x.

87. Ernest J.T. Autoregulation of optic disk oxygen tension. Invest Ophthalmol 1974; 13:101.

88. Kiel J.W., Shepherd A.P. Autoregulation of choroidal blood flow in the rabbit. Invest Ophthalmol Vis Sci 1992; 33:2399-2410.

89. Polska E., Simader C., Weigert G., Doelemeyer A., Kolodjaschna J., Scharmann O., Schmetterer L. Regulation of choroidal blood flow during combined changes in intraocular pressure and arterial blood pressure. Invest Ophthalmol Vis Sci 2007; 48:3768-3774. doi: 10.1167/iovs.07-0307.

90. Fuchsjager-Mayrl G., Georgopoulos M., Hommer A., Weigert G., Pemp B., Vass C., Garhofer G., Schmetterer L. Effect of dorzolamide and timolol on ocular pressure: blood flow relationship in patients with primary open-angle glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci 2010; 51:1289-1296. doi: 10.1167/ iovs.09-3827.

91. Курышева Н.И. Дисфункция эндотелия в патогенезе глаукомы. Глаукома 2011; 2:62-70.

92. Konieczka K., Ritch R., Traverso C., Kim D., Kook M., Golubnitschaja O., Erb C., Reitsamer H., Kida T., Kurysheva N., Yao K. Flammer syndrome. The EPMA Journal 2014; 5:11. doi: 10.1186/ 1878-5085-5-11.

93. Luscher T., Tanner F. Endothelial regulation of vascular tone and growth. Am J Hypertension 1993; 6(2):283-293.

94. Петрищев Н.Н., Власов Т.Д. Дисфункция эндотелия. Причины, механизмы, фармакологическая коррекция. СПбГМУ 2003; 30-35.

95. Haefliger I.O., Flammer J., Beny J.L., Luscher T.F. Endotheliumdependent vasoactive modulation in the ophthalmic circulation. Prog Retin Eye Res 2001; 20:209-225. doi: 10.1016/s13509462(00)00020-3.

96. Schmetterer L., Polak K. Role of nitric oxide in the control of ocular blood flow. Prog Retin Eye Res 2001; 20:823-847. doi: 10.1016/s1350-9462(01)00014-3.

97. Haynes W., Webb D. Contribution of endogenous generation of endothelin-1 to basal vascular tone. Lancet 1994; 344(6): 852-854. doi: 10.1016/s0140-6736(94)92827-4.

98. Cioffi G., Orgul S., Onda E. An in vivo model of chronic optic nerve ischemia: tha dose-dependent effects of endotelin-1on the optic nerve microvasculature. Curr Eye Res 1995; 14(12):11471153. doi: 10.3109/02713689508995821.

99. Oku H., Sugiyama T. Experemental optic cup enlargment caused by endothelin-1-induced chronic optic nerve head ischemia. Surv Ophthalmol 1998; 44(1):74-84. doi: 10.1016/ s0039-6257(99)00068-5.

100. Nishimura K., Riva C.E., Harino S., Reinach P., Cranstoun S.D., Mita S. Effects of endothelin-1 on optic nerve head blood flow in cats. J Ocul Pharmacol Ther 1996; 12(1):75-83. doi: 10.1089/ jop.1996.12.75.

101. Tezel G., Kass M.A., Kolker A.E., Becker B., Wax M.B. Plasma and aqueous humor endothelin levels in primary open-angle glaucoma. J Glaucoma 1997; 6(2):838-839. doi: 10.1097/00061198199704000-00003.

102. Gass A., Flammer J., Linder L., Romerio S.C., Gasser P., Haefeli W.E. Inverse correlation between endothelin-1-induced peripheral microvascular vasoconstriction and blood pressure in glaucoma patients. Graefes Arch Clin Exp Ophthalmol 1997; 235(10):634-638. doi: 10.1007/bf00946939.

103. Nicolela M.T., Ferrier S.N., Morrison C.A., Archibald M.L., LeVatte T.L., Wallace K., Chauhan B.C., LeBlanc R.P. Effects of cold-induced vasospasm in glaucoma: the role of endothelin-1. Invest Ophthalmol Vis Sci 2003; 44(6):2565-2572. doi: 10.1167/ iovs.02-0913.

104. Emre M., Org l S., Haufschild T., Shaw S.G., Flammer J. Increased plasma endothelin-1 levels in patients with progressive open angle glaucoma. Br J Ophthalmol 2005; 89(1):60-63. doi: 10.1136/bjo.2004.046755.

105. Galassi F., Giambene B., Varriale R. Systemic dysregulation and retrobulbar hemodynamics in normal-tension glaucoma. Invest Ophthalmol Vis Sci 2011; 5:4467-4471. doi: 10.1167/iovs. 10-6710.

106. Prasanna G., Krishnamoorthy R., Clark A.F., Wordinger R.J., Yorio T. Human optic nerve head astrocytes as a target for endothelin1. Invest Ophthalmol Vis Sci 2002; 43(8):2704-2713.

107. Chauhan B.C., Mikelberg F.S., Balaszi A.G., LeBlanc R.P., Lesk M.R., Trope G.E.; Canadian Glaucoma Study Group. Canadian Glaucoma Study: 2. Risk factors for the progression of open-angle glaucoma. Arch Ophthalmol 2008; 126:1030–1036. doi:10.1001/ archopht.126.8.1030.

108. Wang X., Levatte T.L., Archibald M.L., Chauhan B.C. Increase in endothelin B receptor expression in optic nerve astrocytes in endothelin-1 induced chronic experimental optic neuropathy. Exp Eye Res 2009; 88:378-385. doi: 10.1016/j.exer.2008.09.009.

109. Drexler H., Zeiher A. Progression of coronary endothelial dysfunction in man and its potential clinical significance. Basic Res Cardiol 1991; 86(2):223-32. doi: 10.1007/978-3-64272461-9_22.

110. Creager M.A., Gallagher S.J., Girerd X.J., Coleman S.M., Dzau V.J., Cooke J.P. L-arginine improves endothelium-dependent vasodilation in hypercholesterolemic humans. J Clin Invest 1992; 90(4):1248-1253. doi: 10.1172/jci115987.

111. Курышева Н.И., Томилова И.К., Деев А.А., Назаров С.Б. Оксид азота в патогенезе катаракты и глаукомы. Вестник офтальмологии 2001; 5:5-7.

112. Doganay S., Evereklioglu C., Turkoz Y., Er H. Decreased nitric oxide production in primary open-angle glaucoma. Eur J Ophthalmol 2002; 12(1):44-48.

113. Nathanson J.A., McKee M. Alterations of ocular nitric oxide synthase in human glaucoma. Invest Ophthalmol Vis Sci 1995; 36(9):1774-1784.

114. Asahara T., Murohara T., Sullivan A. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964-967. doi: 10.1126/science.275.5302.964.

115. Steiner S., Niessner A., Ziegler S. Endurance training increases the number of endothelial progenitor cells in patients with cardiovascular risk and coronary artery disease. Atherosclerosis 2005; 18:305-310. doi:10.1016/j.atherosclerosis.2005.01.006.

116. Atalar P.T., Atalar E., Kilic H. Impaired systemic endothelial function in patients with pseudoexfoliation syndrome. Int Heart J 2006; 47:77-84. doi: 10.1536/ihj.47.77.

117. Werner N., Kosiol S., Schiegl T., Ahlers P., Walenta K., Link A., Bohm M., Nickenig G. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 2005; 353:999-1007. doi: 10.1056/nejmoa043814.

118. Pache M., Flammer J. A sick eye in a sick body? Systemic findings in patients with primary open-angle glaucoma. Surv Ophthalmol 2006; 51:179-212. doi: 10.1016/j.survophthal.2006.02.008.

119. Orzalesi N., Rossetti L., Omboni S. Vascular risk factors in glaucoma: the results of a national survey. Graefes Arch Clin Exp Ophthalmol 2007; 245:795-802. doi: 10.1007/s00417-0060457-5.

120. Kotliar K.E., Nagel E., Vilser W., Lanzl I.M. Functional in vivo assessment of retinal artery microirregularities in glaucoma. Acta Ophthalmol 2008; 86:424-433. doi: 10.1111/j.1600-0420. 2007.01072.x.

121. Fadini G.P., Pagano C., Baesso I., Kotsafti O., Doro D., V. de Kreutzenberg S., Avogaro A., Agostini C., Dorigo M. Reduced endothelial progenitor cells and brachial artery flow-mediated dilation as evidence of endothelial dysfunction in ocular hypertension and primary open-angle glaucoma. Acta Ophthalmol 2010; 88:135-141. doi: 10.1111/j.1755-3768.2009.01573.x.

122. Курышева Н.И., Иртегова Е.Ю., Ясаманова А.Н. Роль эндотелиальной дисфункции в прогрессировании глаукомной оптической нейропатии. Российский офтальмологический журнал 2015; 2:34-39.


Рецензия

Для цитирования:


Курышева Н.И. СОСУДИСТАЯ ТЕОРИЯ ПАТОГЕНЕЗА ГЛАУКОМНОЙ ОПТИКОНЕЙРОПАТИИ: ФИЗИОЛОГИЧЕСКОЕ И ПАТОФИЗИОЛОГИЧЕСКОЕ ОБОСНОВАНИЕ. ЧАСТЬ 2. Национальный журнал Глаукома. 2017;16(4):98-109.

For citation:


Kurysheva N.I. VASCULAR THEORY OF THE GLAUCOMATOUS OPTIC NEUROPATHY PATHOGENESIS: PHYSIOLOGICAL AND PATHOPHYSIOLOGICAL RATIONALE. PART 2. National Journal glaucoma. 2017;16(4):98-109. (In Russ.)

Просмотров: 699


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)