CHRONOBIOLOGICAL DISTURBANCES IN THE PATHOGENESIS OF AGE-ASSOCIATED DISEASES. THE SIGNIFICANCE OF BIOLOGICAL RHYTHMS DESYNCHRONIZATION IN THE PATHOGENESIS OF PRIMARY GLAUCOMA
Abstract
The article presents a review of latest research related to various aspects of age-associated diseases pathogenesis. It describes the modern concepts of natural aging and the disorders of adaptation mechanisms that oppose the involution processes. The chronobiological formation concept of temporary biological structure and the key components of circadian system regulation are reported in detail. Arguments in favor of violations of strong consistency of various physiological processes in glaucoma are recounted. The article emphasizes the role of diurnal IOP amplitude fluctuations as a reliable marker, as well as an important pathogenetic factor of glaucoma development. Other chronobiological factors that may be considered predictors of various age-related neurodegenerative diseases, including glaucoma, are discussed. The review analyzes the mechanisms of system desynchronization development, such as extra-circadian dissemination and the development of primary open-angle glaucoma (POAG). Primary open angle glaucoma is considered to be a desynchronosisrelated, age-associated disease. Moreover, the article presents a hypothesis of POAG being not only a consequence, but also a cause of circadian rhythm disturbance.
About the Author
T. N. MalishevskayaRussian Federation
Ph.D., Deputy Chief physician
118 Holodilnaya str., Tyumen, 625048
References
1. Quigley H.A., Broman A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006; 90(3):262-267.
2. Pirozhkov S.I., Safarova G.L. Tendence in aging in Russian and Ukrainian population: demographic aspects. Advances in gerontology 2000; 4:14-21. (In Russ).
3. Statistic data of Federal research institute for Health organization and Informatics of Ministry of Helath of Russian Federation, 2015.
4. Avdeev R.V., Aleksandrov A.S., Bakunina N.A., Basinskiy A.S., Blum E.A., Brezhnev A.Yu. et al. Primary open-angle glaucoma: at what age and at what disease duration blindness can occur. Mediko-biologicheskie problem zhizhnedeyatelnosti 2014; 12(2):74-84. (In Russ.).
5. Avdeev R.V., Aleksandrov A.S., Bakunina N.A., Basinskiy A.S., Blum E.A., Brezhnev A.Yu. et al. Projected age of patients and disease duration for intensive therapeutic and prophylactic actions in primary glaucoma. Ophthalmology. Eastern Europe 2014; 22(3):60-71. (In Russ.).
6. Gavrilov L.A., Gavrilova N.S. Biologiya prodolzhitelnosti zhizni [Biology of life continuation]. Moscow, Nauka Publ., 1986; 167 p. (In Russ.).
7. Korkushko O.V., Chebotarev D.F., Kalinovskaya E.G. Geriatriya v terapevticheskoi praktike [Geriatrics in therapeutic practice]. Kiev, Zdorovie Publ., 1993; 840 p. (In Russ.).
8. Kotelnikov G.P., Yakovlev O.G., Zakharova I.O. Gerontologiya i geriatriya: uchebnik dlya studentov meditsinskikh vuzov, slushatelei uchrezdeniy dopolnitelnogo professionalnogo obrazovaniya i povysheniya kvalifikatsii spetsialistov. [Gerontology and geriatrics: a textbook for medical students and listeners of extra professional education and qualification improvement establishments]. Moscow, 1997; 385 p. (In Russ.).
9. Frolkis V.V. Gerontology: prognoses and hypotheses. Visn. Nac. Akad. Nauk Ukr. 1999; 28-40. (In Russ.).
10. Khavinson V.Kh., Golubev A.G. Epiphysis aging. Advances in gerontology 2000; 9:67-73. (In Russ.)
11. Alekseev V.N., Martynova E.B., Malevannaya O.A. et al. Mitochondrial pathology in medicine and ophthalmology. In: Glaucoma: theory and practice. Conference materials. Saint Petersburg, 2011; 3-5 pp. (In Russ.).
12. Egorov E.A., Alekseev V.N., Martynova E.V., Kharkovsky O.A. Patogeneticheskie aspekty lecheniya pervichnoi otkrytougolnoi glaukomy [Pathogenetic aspects of primary openangle glaucoma treatment]. Moscow, 2011; 118 p. (In Russ.).
13. Erichev V.P. Pathogenesis, diagnostics and treatment of primary open-angle glaucoma. Rossiyskiy meditsinskiy zhurnal 1998; 4:35-39. (In Russ.).
14. Astakhov Yu.S., Ustinova E.I. On traditional and modern methods of opthalmotonus fluctuations investigation. Ophthalmologic vedomosti 2008; 1(2):8-11. (In Russ.).
15. Alekseev V.N., Gazizova I.R. Brain and glaucoma (clinical experimental research). In: XII All-Russian ophthalmology school: collection of conference articles. Moscow, LLC Begemot Publ., 2013. 13-17 pp. (In Russ.).
16. Alekseev V.N., Gazizova I.R., Nikitin D.N., Tubadzhi Yessam, Rindzhibal Al-Maysam, Farzad Zakhedi. Primary open-angle glaucoma and degenerative changes in the central area of the visual analyzer. Ophthalmologic vedomosti 2012; 3:23-28. (In Russ.).
17. Erichev V.P., Kozlova I.V., Makarova A.S., Jin Dan. Features of systemic hemodynamics in patients with progressive primary open-angle glaucoma with compensated intraocular pressure. Natsional’nyi zhurnal glaukoma 2013; 3:22-25. (In Russ.).
18. Mamikonyan V.R., Kazaryan E.E., Galoyan N.S., Shmeleva-Demir O.A. Comparative analysis of several morphometric parameters received using optic coherent tomography and scanning laser ophthalmoscopy in initial glaucoma diagnosis. Vestn Oftalmol 2011; 127(2):18-20. (In Russ.).
19. Breus T.K. Chronostructure of heart biorhythms and environment factors. Moscow, RUDN University, 2002; 232 p. (In Russ.).
20. Agadzhanyan N.A., Fateeva N.M., Kolpakov V.V. Hemostasis biorhythms in industrial migrations. Moscow-Tyumen, Tyumen State Medical Academy, 1999. 58 p. (In Russ.).
21. Anisimov V.N., Khavinson V.Kh., Morozov V.G. Role of epiphysis peptides in homeostasis regulation: 20-year study experience. Biology Bulletin Reviews 1993; 113(6):752-761. (In Russ.).
22. Анисимов В.Н. Средства профилактики ускоренного старения (геропротекторы). Успехи геронтологии 2000; 4:55-75. [Anisimov V.N. Prophylaxis of accelerated aging (geroprotectors). Advances in gerontology 2000; 4:55-75. (In Russ.).
23. Baevskiy R.M., Voronova A.P. Otsenka adaptatsionnykh vozmozhnostei organizma i risk razvitiya zabolevaniy [Evaluation of organism adaptive abilities and risk of disease development]. Moscow, 1997; 235. (In Russ.).
24. Ashmarin I.P. Neiromediators and meuromodulators. Evolution of substances and evolution of hypotheses. J Evolutionary Biochemistry and Physiology 1979; 3:279-282. (In Russ.).
25. Bass J., Takahashi J.B. Circadian integration of metabolism and energetics. Science 2010; 330(6009):1349-1354.
26. Gazizova I.R. Mitochondrial pathology and glaucoma. Natsional’nyi zhurnal glaukoma 2011; (4):58-65. (In Russ.).
27. Gusev V.A. Free-radical theory of aging in the gerontology paradigm. Advances in gerontology 2000; 4:41-49. (In Russ.).
28. Bernstein L.M. Gormonalnyi kantserogenez [Hormonal cancerogenesis]. Saint Petersburg, Nauka Publ., 2000. 199 p. (In Russ.).
29. Thygesen J., Aagren M, Arnavielle S. et al. Late stage glaucoma in Europe: cost and quality of life of patients from four countries. Congress of WGA, 2nd: Abstracts. Singapore, 2007; 257.
30. Thygessen J., Christensen T.L., Andersen C.K. et al. Cost analysis of glaucoma related blindness in Europe. Congress of EGS, Abstracts. Florence, 2004; 66.
31. Anisimov V.N., Vinogradova I.A. Light regimen, melatonin and cancer risk. Voprosy onkologii 2006; 52(5):491-498. (In Russ.).
32. Vereschagin N.V. Conceptions in neurology: theory and practice. Zhurnal nevropatologii i psikhiatrii 1991; 91(6):90-92. (In Russ.).
33. Behavioral risk factors of chronic non-inflectional diseases development monitoring system development. Moscow research 2000-2001. 25 p. (In Russ.).
34. Khavinson V.Kh., Golubev A.G. Epyphysis aging. Advances in gerontology 2000; 9:67-73. (In Russ.).
35. Gubin G.D., Gubin D.G., Komarov P.I. Aging looked from the point of temporary organization of logic systems. Advances in gerontology 1998; 2:67-73. (In Russ.).
36. Gubin D.G., Gubin G.D., Gapon L.I. Advantages of chronobiological normatives usage in analysis of ambulatory blood pressure monitoring data. J of arrhythmology 2000; 16:84-94. (In Russ.).
37. Anisimov V.N., Vinogradova I.A. Light regimen, melatonine and cancer risk. Voprosy onkologii 2006; 52(5):491-498. (In Russ.).
38. Anisimov V.N., Vinogradova I.A., Bukalev A.Y., Popovich I.G., Zabezhinsky M.A., Panchenko A.Y., Tyndyk M.L., Yurova M.N. Light-induced desynchronosis and risk of malignant tumors in laboratory animals: state of the problem. Voprosy onkologii 2014; 60:(2[114]):15-27. (In Russ.).
39. Romanov Yu.A. Chronobiology as one of the main branches of modern theoretical biology. Part of: Komarov F.I., Rapoport S.I. Hronobiologiya i meditsina [Chronobiology and medicine]. Moscow, Triada-X Publ., 2000; 9-24 p. (In Russ.).
40. Gubin D.G. Molecular mechanism of circadian rhythms and principles of desyncronosis development. Uspekhi fiziologicheskikh nauk 2013; 44(4):65-87. (In Russ.).
41. Carcangiu V., Mura M.C., Parmeggiani A. et al. Daily rhythm of blood melatonin concentrations in sheep of different ages. Biol Rhythm Res 2013; 44(6):908-915.
42. Swaab D.F., Hofman M.A. Age sex and light: variability in the human suprachiasmatic nucleus in relation to its functions. Brain Res 1994; 100:261-265.
43. Agadzhanyan N.A., Gubin D.G. Desyncronosis: development mechanisms from molecular to systemic level. Uspekhi fiziologicheskikh nauk 2004; 35(2):57-72. (In Russ.).
44. Cornelissen G., Gubin D., Halberg Francine et al. Chronomedical aspects of gerontology and geraitrics. In Vivo 1999: 13:77-82.
45. Anisimov V.N. Epiphysis, biorhythms and organism aging. Uspekhi fiziologicheskikh nauk 2008; 39(4):40-65. (In Russ).
46. Kripke D.F., Elliott J.A., Youngstedt S.D., Rex K.M. Circadian phase response curves to light in older and young women and men. J Circadian Rhythms 2007; 5:4.
47. Tikhonov P.P., Sokolova L.A. Features of autonomous nervous system regulation mechanisms in arterial hypertension patients with impairment of daily rhythm of arterial pressure (nondipper type). J of arrhythmology 2005; 40:50-54. (In Russ.).
48. Fateeva N.M. Biorhythms of the healthy organism physiological functions in Tumen conditions. In: Rhythm problems in natural science: material of international conference. Moscow, 2004, 451-453 pp. (In Russ.).
49. Gapon L.I., Mikhailova I.M., Shurkevich N.P., Gubin D.G. Chronostructure of arterial pressure and heartbeat frequency dependency of season rhythm in arterial hypertension patients in KhantyMansi region. J of arrhythmology 2003; 31:32-36. (In Russ.).
50. Kobaloba Zh.D., Kotovskaya Yu.V. Some features of arterial pressure daily rhythms in patients with essential hypertension with concomitant risk factors. Praktikuyuschiy vrach 1997; 11:6-9. (In Russ.).
51. Fateeva N.M., Kiyaniuk N.S. Daily and season dynamics of platelet cell membrane lipids in the middle latitudes. Nauchniy vestnik Tumenskoi meditsinskoi akademii 2002; 7-8:83. (In Russ).
52. Shvalev V.N., Tarkiy N.A. Phenomenon of early involution of sympathetic vegetative system. Cardiology 2000; 2:10-14. (In Russ).
53. Ashmarin I.P. Neiromediators and meuromodulators. Evolution of substances and evolution of hypotheses. J of Evolutionary Biochemistry and Physiology 1979; 3:279-282. (In Russ.).
54. Brun J., Claustrat В., Saddier P., Chazot G. Nocturnal melatonin excretion is decreased in patients with migraine without aura attacks associated with menses. Cephalgia 1995; 15:136-139.
55. Gale J.E., Cox H.E., Qian J., Block G.D., Colwell C.S., Matveyenko A.V. Disruption of circadian rhythms accelerates development of diabetes through pancreatic beta-cell loss and dysfunction. J of Biological Rhythms 2011; 26(5):423-433. (In Russ.).
56. Maury E., Ramsey K.M., Bass J. Circadian rhythms and metabolic syndrome. From Experimental Genetics to Human Disease. Circulation Research 2010; 106:447-462.
57. Chiquet C., Denis P. The neuroanatomical and physiological bases of variations in intraocular pressure. J Francais d’Ophtalmologie 2004; 2:2S11-2S18.
58. David R., Zangwill L., Briscoe D. et al. Diurnal intraocular pressure variations: an analysis of 690 diurnal curves. Br J Ophthalmol 1992; 76:280-283.
59. Gubin D.G. Molecular basis of circadian rhythms and principles of circadian disrupion. Uspekhi fiziologicheskikh nauk 2013; 44(4):65-87. (In Russ.).
60. Gubin D.G. Extracircadian dissemination as general feature of desynchronosis: from systemic to organismic level. RUDN J of Medicine 2012; 7:83-84. (In Russ.).
61. Gubin D., Weinert D., Rybina S.V. et al. Activity, sleep and ambient light have a different impact on circadian blood pressure, heart rate and body temperature rhythms. Chronobiol Int 2017. Pending.
62. Obayashi K., Saeki K., Iwamoto J., Ikada Y., Kurumatani N. Association between light exposure at night and nighttime blood pressure in the elderly independent of nocturnal urinary melatonin excretion. Chronobiol Int 2014; 31(6):779-786.
63. Gubin D.G., Weinert D., Bolotnova T.V. Age-dependent changes of the Temporal Order — Causes and Treatment. Current Aging Science 2016; 9(1):14-25.
64. Gubin D.G., Gubin G.D., Gapon E.I., Weinert D. Daily melatonin administration attenuates age-i5cpendent disturbances of cardiovascular rhythms. Current Aging Science 2016; 9(1):5-13.
65. Jackowska M., Hamer M., Carvalho L.A. et al. Short sleejrouration is associated with shorter telomere length in healthy men: findings from the Whitehall II Cohort Study. PLoS One 2012; 7:7292.
66. Antoun G., Cannon P.В., Cheng H-Y.M. Regulation of signaling and photic entrainment of the suprachiasmatic nucleus circadian CLOCK by Raf kinase inhibitor protein. J Neurosci 2012; 32:4867-4877.
67. Hansen K.F., Sakamoto K., Obrietan K. MicroRNAs: a potential interface between the circadian CLOCK and human health. Genome Medicine 2011; 3:10.
68. Dubrovsky Y.V., Samsa W.E., Kondratov R.V. Deficiency of circadian protein CLOCK reduces lifespan and increases age-related cataract development in mice. Aging 2010; 2:936-944.
69. Duong H.A., Robles M.S., Knutti D., Weitz C.J. A molecular mechanism for circadian CLOCK negative feedback. Science 2011; 332:1436-1439.
70. Asher G., Gatfield D., Stratmann M. et al. SIRT1 regulates circadian CLOCK gene expression through PER2 deacetylation. Cell 2008; 134:317-328.
71. Duncan M.J., Prochot J.R., Cook D.H. et al. Per2 expression in extraSCN oscillators in hamster brain. Brain Res 2013; 1491:44-53.
72. Lakatua D. Molecular and genetic aspects of chronobiology. Heidelberg: Springer-Verlag, 1992. 216 p.
73. Dubrovsky Y.V., Samsa W.E., Kondratov R.V. Deficiency of circadian protein CLOCK reduces lifespan and increases age-related cataract development in mice. Aging 2010; 2:936-944.
74. Belden W.J., Dunlap J.С SIRT1 is a circadian-deacetylase for core CLOCK components. Cell 2008; 134:212-214.
75. Serbin M.E., Scherbak E.V. Apoptosis and its molecular effects. Actual problems of biology, medicine and ecology: a collection. Edited by prof., Med.Sc.D. N.N. Ilyinskikh. Tomsk, Siberian State Medical University, 2004. (In Russ.).
76. Chen L.D., Tan D.X., Reiter R.J. et al. In vivo and in vitro effects of the pineal gland and melatonin on [Ca2++Mg2+]-dependent ATPase in cardiac sarcolemma. Pineal Res 1993; 14:178-183.
77. Welsh O.K., Takahashi J.S., Kay S.A. Suprachiasmatic ntiteteas: cell autonomy and network properties. Ann Rev Physiol 2010; 72:551-577.
78. Swaab D.F., Van Someren E.J., Zhou J.N., Hofman M.A. Biological rhythms in the human life cycle and their relationship to functional changes in the suprachiasmatic nucleus. Prog Brain Res 1996, 111:349-368.
79. Romanov R.A. Bioloicheskie ritmy gipotalamo-gipofizarno-nadpochchnikovoi sistemy u zhivotnykh i cheloveka v norme i patologii [Biological rhythms of hypothalamic– pituitary–adrenal axis in human and animals in normal and pathologic state]. Moscow, 1975; 79-85 pp. (In Russ.).
80. Hofman M.A., Swaab D.F. Living by the clock: The circadian pacemaker in older people. Aging Res Rev 2006; 5:33-51.
81. Agez L., Laurent V., Guerrero H.Y. et al. Endogenous melatonin provides an effective circadian message to both the suprachiasmatic nuclei and the pars tuberalis. J Pineal Res 2009; 46:95-105.
82. Ferracioli-Oda E., Qawasmi A., Block M.H. Meta-Anatysis: Melatonin for the treatment of primary sleep disorders. PLoS One 2013; 8(5): e63773.
83. Fahrenkrug J. Synaptic contact between melanopsin-containing retinal ganglion cells and rod bipolar cells. Invest Ophthalmol Vis Sci 2007; 48:3812-3820.
84. Zhang Y., Kornhauser J.M., Zee P.C., Mayo K.E., Takahashi S., Turek F.W. Effects of aging on light-induced phase-shifting of circadian behavioral rhythms, expression and CREB phosphorylation in the hamster suprachiasmatic nucleus. Neurosci 1996; 70:951-961.
85. Gubin D., Nelaeva A., Uzhakova A. et al. Melatonin attenuates disrupted temperature, blood glucose and heart rate daily rhythms in patients with type 2 diabetes and prediabetes. 2017. Pending.
86. Gubin D.G., Gubin G.D., Gapon L.I., Weinert D. Daily Melatonin administration attenuates age-dependent disturbances of cardiovascular rhythms. Curr Aging Sci 2016; 9(1):5-13.
87. Blasic D.E., Cos S., Hill S.M. et al. Melatonin action and oncogenesis. In: Role of melatonin and pineal peptides in neuromodulation. New York, Plenum Press, 1991; 233-240 р.
88. Ramkisoensing A., Meijer J.I.T. Synchronization of biological clock neurons by light and peripheral feedback systems promotes circadian rhythms and health. Frontiers in Neurology 2015; 6:128.
89. Brown S.A., Schmitt K., Eckert A. Aging and circadian disfuncion: causes and effects. Aging 2011; 3:1-5.
90. Gubin D.G., Weinert D., Bolotnova T.V. Age-dependent changes of the temporal order — causes and treatment. Curr Aging Science 2016; 9(1):14-25.
91. Bukalev A.V., Vinogradova I.A., Zabezhinskiy M.A. et al. Light pollution increases morbidity and mortality of different causes in male rats. Advances in gerontology 2012; 25(1):49-56. (In Russ.).
92. Farajnia S., Michel S., Deboer Т. et al. Evidence for neuronal desynchrony in the aged suprachiasmatic nucleus clock. J Neurosci 2012; 32:5891-5899.
93. Edgar R.S., Green E.W., Zhao Y. et al. Peroxiredoxins are conserved markers of circadian rhythms. Nature 2012; 485:459-464.
94. Refinetti R., Ma H., Satinoff E. Body temperature rhythms, cold tolerance, and fever in young and old rats of both genders. Exp Gerontol 1990; 25:533-543.
95. Hattar S., Lucas R.J., Mrosovsky N., Thompson S., Douglas R.H., Hankins M.W., Lem J., Biel M., Hofmann F., Foster R.G., Yau K.W. Melanopsin and rodcone photoreceptive systems account for all major accessory visual functions in mice. Nature 2003; 424:76-81.
96. Agarwal A. Gass’ atlas of macular diseases. Amsterdam: Elsevier Saunders; 2012.
97. Agorastos A., Huber C.G. The role of melatonin in glaucoma: implications concerning pathophysiological relevance and therapeutic potential. J Pineal Res 2011; 50:1-7.
98. Alarma-Estrany P., Guzman-Aranguez A., Huete F. et al. Design of novel melatonin analogs for the reduction of intraocular pressure in normotensive rabbits. J Pharmacol Exp 2011; 337:703-709.
99. Yucel Y.H., Zhang Q., Weinreb R.N., Kaufman P.L., Gupta N. Effects of retinal ganglion cell loss on mango-, parvo-. Koniocellular pathway in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res 2003; 22(4):465-481.
100. Gazizova I.R., Almaysam R. Brain neurodegenerative changes in glaucoma. RMJ Clinical ophthalmology 2012; 3:88-91. (In Russ.).
101. Di Bella G., Mascia F., Gualano L., Di Bella L. Melatonin Anticancer Effects: Review. Int J Mol Sci 2013; 14:2410-2430.
102. Benloucif S., Orbeta L., Ortiz R., Janssen I., Finkel S.I., Bleiberg J., Zee P.C. Morning or evening activity improves neuropsychological performance and subjective sleep quality in older adults. Sleep 2004; 27:1542-1551.
103. Calvo J.R., Raffi-El-Idrissi M., Pozo D., Guerrero J.M. Immunimodulatory role of melatonin: specific binding sites in human and rodent lymphoid cells. J Pineal Res 1995; 18:119-126.
104. Anisimov V.N., Baturin D.A., Popovich I.G. et al. Effect of exposure to light-at-night on life span and spontaneous carcinogenesis in female CBA mice. Int J Cancer 2004; 111:475.
105. Buijs R.M., Kalsbeek A., Romijn H.J., Pennartz C.M.A., Mirmiran M. Hypothalamic integration of circadian rhythms. Amsterdam, Elsevier; 1996.
106. Buhr E.D., Yoo S.H., Takahashi J.S. Temperature as a universal resetting cue for mammalian circadian oscillators. Science 2010; 330:379-385.
107. Cagnacci A., Soldani R., Yen S.S.C. The effect of light on core body temperature is mediated by melatonin in women. Clin Endocrinol Metab 1993; 76:1036-1038.
108. Gubin D., Nelaeva A., Uzhakova A. et al Disrupted circadian rhythms of body temperature, rate and fasting blood glucose in prediabetes and type 2 diabetes mellitus. 2017. Pending.
109. Gubin D., Nelaeva A., Uzhakova A. et al. Melatonin attenuates disrupted temperature, blood glucose and heart rate daily rhythms in patients with type 2 diabetes and prediabetes. 2017. Pending.
110. Hida A., Kitamura Sh., Ohsawa Y. et al. In vitro circadian period is associated with circadian/sleep preference. Scientific Rapports 2013; 3:2074.
111. Rosenwasser A.M., Wirz-Justice A. Circadian rhythms and depression: clinical and experimental models. Handbook of Experimental Pharmacology, Springer, Berlin, Heidelberg. 125; 457-485.
112. Yucel Y., Gupta N. Glaucоma of the brain: a disease model for the study of transsynaptic neural degeneration. Prog Brain Res 2008; 173:465-478.
113. Gupta N., Ang L.C., Girard E., Yucel Y.H. Retinal tau pathology in human glaucomas. Can J Ohthalmol 2008; 43:53-60.
114. Gupta N., Zhang Q., Kaufman P.L., Weinreb R.N., Yucel Y.H. Chronic ocular hypertension induces dendrite pathology in the lateral geniculate nucleus of the brain. Exper Eye Res 2007; 84:176-184.
115. Dibner C., Schibler U., Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Ann Rev Physiol 2010; 72:517-549.
116. Buguet A.P., Romanet J.P. 24-hour (nyctohemeral) and sleep-related variations of intraocular pressure in healthy white individuals. Am J Ophthalmol 1994; 117:342-347.
117. Thygesen J., Aagren M., Arnavielle S. et al. Late stage glaucoma in Europe: cost and quality of life of patients from four countries. Congress of WGA, 2nd: Abstracts. Singapore, 2007; 257.
118. Thygessen J., Christensen T.L., Andersen C.K. et al. Cost analysis of glaucoma related blindness in Europe. Congress of EGS: Abstracts. Florence, 2004; 66.
Review
For citations:
Malishevskaya T.N. CHRONOBIOLOGICAL DISTURBANCES IN THE PATHOGENESIS OF AGE-ASSOCIATED DISEASES. THE SIGNIFICANCE OF BIOLOGICAL RHYTHMS DESYNCHRONIZATION IN THE PATHOGENESIS OF PRIMARY GLAUCOMA. National Journal glaucoma. 2017;16(4):110-120. (In Russ.)