Preview

National Journal glaucoma

Advanced search

Corneal polarized photoluminescence ex vivo under internal mechanical strain

https://doi.org/10.25700/NJG.2018.04.02

Abstract

Current methods of intraocular pressure (IOP) measurement cannot always deliver reliable data. Therefore, creating a new objective tonometry method is a relevant objective.

PURPOSE: To develop a confocal optic system for cornea probing by polarized light. To explore the luminescence polarization, emitted by rabbit cornea ex vivo, induced by polarized radiation depending on IOP.

METHODS: An enucleated rabbit eye was fixated in the holder with the system of IOP setup and maintenance. The local photoluminescence of the cornea was initiated by polarized radiation of diode laser with 405-nm wavelength. Photoluminescence spectrums measurement was performed by confocal Raman microscopy. To measure the co- and cross-polarized photoluminescence components, a polarization filter was directed parallel or perpendicular to the polarization vector of excitation radiation. The photoluminescence spectrums were measured with IOP of 20, 40 and 60 mmHg.

RESULTS: The spectrums of polarization degree corresponding to IOP values of 20, 40 and 60 mmHg were obtained. IOP change in the range of 20-60 mmHg did not produce any significant change of luminescence polarization specters.

CONCLUSIONS: No reliable change of measured specters was detected during the IOP change.

About the Authors

S. Yu. Petrov
Scientific Research Institute of Eye Diseases.
Russian Federation

  Med.Sc.D., leading research associate of Glaucoma Department.

11a Rossolimo st., Moscow, 119021.



I. A. Bubnova
Научно-исследовательский институт глазных болезней.
Russian Federation
Med.Sc.D., leading research associate of the Refractive disorders department.


I. A. Novikov
Научно-исследовательский институт глазных болезней.
Russian Federation
senior research associate of the Laboratory of fundamental research in ophthalmology.


N. A. Pakhomova
Научно-исследовательский институт глазных болезней.
Russian Federation
postgraduate student.


A. V. Volzhanin
Научно-исследовательский институт глазных болезней.
Russian Federation


A. P. Sviridov
Федеральный научно-исследовательский центр «Кристаллография и фотоника».
Russian Federation

Phys.Math.Sc.D., leading research associate

59 Leninsky Ave., Moscow, Russian Federation, 119333.



A. G. Shubny
Federal scientific research center «Crystallography and Photonics».
Russian Federation

Phys.Math.Sc.D., leading research associate

59 Leninsky Ave., Moscow, 119333.



N. V. Minaev
Federal scientific research center «Crystallography and Photonics».
Russian Federation

Ph.D., senior research associate/

59 Leninsky Ave., Moscow,  119333.



References

1. Quigley H.A., Broman A.T. The number of people with glaucoma world¬wide in 2010 and 2020. Br J Ophthalmol. 2006; 90(3):262-267. doi: 10.1136/bjo.2005.081224.

2. Teus M.A., Castejon M.A., Calvo M.A., Perez-Salaices P., Marcos A. Intra¬ocular pressure as a risk factor for visual field loss in pseudoexfoliative and in primary open-angle glaucoma. Ophthalmology. 1998; 105(12): 2225-2229; discussion 2229-2230. doi: 10.1016/S0161-6420(98)91220-9.

3. Weinreb R.N., Aung T., Medeiros F.A. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014; 311(18):1901-1911. doi: 10.1001/ jama.2014.3192.

4. Boland M.V., Ervin A.M., Friedman D.S., Jampel H.D., Hawkins B.S., Vol- lenweider D., Chelladurai Y., Ward D., Suarez-Cuervo C., Robinson K.A. Comparative effectiveness of treatments for open-angle glaucoma: a sys-tematic review for the U.S. Preventive Services Task Force. Ann Intern Med. 2013; 158(4):271-279. doi: 10.7326/0003-4819-158-4-201302190-00008.

5. Garcia-Feijoo J., Martinez-de-la-Casa J.M., Morales-Fernandez L., Saenz Frances F., Santos-Bueso E., Garcia-Saenz S., Mendez-Hernandez C. New technologies for measuring intraocular pressure. Prog Brain Res. 2015; 221:67-79. doi: 10.1016/bs.pbr.2015.06.003.

6. Lebedev O.I., Kalizhnikova E.A., Yavorsky A.E. Top-list of errors in the manage¬ment of glaucoma patients: tonometry. Glaukoma. 2013; 4:43-51. (In Russ.).

7. Luce D.A. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005; 31(1):156-162. doi: 10.1016/j.jcrs.2004.10.044.

8. Kontiola A.I. A new induction-based impact method for measuring intra¬ocular pressure. Acta Ophthalmol Scand. 2000; 78(2):142-145.

9. Duan L., Yamanari M., Yasuno Y. Automated phase retardation oriented segmentation of chorio-scleral interface by polarization sensitive opti¬cal coherence tomography. Opt Express. 2012; 20(3):3353-3366. doi: 10.1364/OE.20.003353.

10. Avetisov S.E., Bubnova I.A., Novikov I.A., Antonov A.A., Siplivyi V.I. Expe-rimental study on the mechanical strain of corneal collagen. J Biomech. 2013; 46(10):1648-1654. doi: 10.1016/j.jbiomech.2013.04.008.

11. Semchishen A.V., Semchishen V.A. Eye cornea photoelasticity measure¬ment. Astigmatism internal mechanical stress distridution. Almanakh klinicheskoi meditsiny. 2008; 17(2):128-132. (In Russ.).

12. Wu Q., Yeh A.T. Rabbit cornea microstructure response to changes in intra-ocular pressure visualized by using nonlinear optical microscopy. Cornea. 2008; 27(2):202-208. doi: 10.1097/ICO.0b013e318159221e.

13. Hennighausen H., Feldman S.T., Bille J.F., McCulloch A.D. Anterior-pos¬terior strain variation in normally hydrated and swollen rabbit cornea. Invest Ophthalmol Vis Sci. 1998; 39(2):253-262.

14. Bohnke M., Masters B.R. Confocal microscopy of the cornea. Prog Retin Eye Res. 1999; 18(5):553-628.

15. Yeh A.T., Nassif N., Zoumi A., Tromberg B.J. Selective corneal imaging using combined second-harmonic generation and two-photon excited fluo¬rescence. Opt Lett. 2002; 27(23):2082-2084.

16. Calkins J.L., Hochheimer B.F., Stark W.J. Corneal wound healing: holo¬graphic stress-test analysis. Invest Ophthalmol Vis Sci. 1981; 21(2): 322-334.

17. Jaycock P.D., Lobo L., Ibrahim J., Tyrer J., Marshall J. Interferometric tech-nique to measure biomechanical changes in the cornea induced by refrac¬tive surgery. J Cataract Refract Surg. 2005; 31(1):175-184. doi: 10.1016/j. jcrs.2004.10.038.

18. Grabner G., Eilmsteiner R., Steindl C., Ruckhofer J., Mattioli R., Husin- sky W. Dynamic corneal imaging. J Cataract Refract Surg. 2005; 31(1): 163-174. doi: 10.1016/j.jcrs.2004.09.042.

19. Obrubov S.A., Voronkov V.N., Sidorenko E.I., Molotkov A.P., Fedoro¬va V.N. Method of eye tissue biomechanic properties intravital evalu¬ation (experimetal study). Vestn oftalmol. 1995; 4:27. (In Russ.).

20. Ichihashi Y., Khin M.H., Ishikawa K., Hatada T. Birefringence effect of the in vivo cornea. Optical Engineering. 1995; 34(3):693-701.

21. Bubnova I.A., Semchishen V.A., Sviridov A.P., Khaidukov E.V., Novikov I.A., Petrov S.Yu., Pakhomova N.A., Volzhanin A.V. Spectral-polarized proper¬ties of eye fibrous tunic photoluminescence. Medicine. 2016; 3:190-200. (In Russ.).

22. Bubnova I.A., Semchishen V.A., Sviridov A.P., Khaidukov E.V., Novikov I.A., Petrov S.Yu., Pakhomova N.A., Volzhanin A.V. Studies of luminescence and structure of eye tissue under mechanical loads. Meditsina. 2017; 3:38-57. (In Russ.).


Review

For citations:


Petrov S.Yu., Bubnova I.A., Novikov I.A., Pakhomova N.A., Volzhanin A.V., Sviridov A.P., Shubny A.G., Minaev N.V. Corneal polarized photoluminescence ex vivo under internal mechanical strain. National Journal glaucoma. 2018;17(4):16-23. (In Russ.) https://doi.org/10.25700/NJG.2018.04.02

Views: 527


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)