Preview

National Journal glaucoma

Advanced search

A comparative study of structural, functional and circulatory parameters in glaucoma diagnostics

https://doi.org/10.25700/NJG.2019.04.02

Abstract

PURPOSE: To compare the diagnostic accuracy of structural parameters, vessel density (VD) measured by optical coherence tomography angiography (OCTA), and electrophysiological testing in primary open-angle glaucoma (POAG) diagnosis.

METHODS: 35 healthy participants and 90 POAG patients underwent the measurement of whole image en face (wi) VD in the disc/peripapillary region and macula, as well as the assessment of the retinal nerve fiber layer (RNFL), average thickness of ganglion cell complex (GCC), pattern electroretinograms and pattern visual evoked potentials. The area under the receiver operating characteristic curve (AUC) was assessed for each parameter to differentiate early POAG from healthy eyes and conduct a differential diagnosis between the POAG stages.

RESULTS: To distinguish early POAG from healthy eyes, the parameters with the highest AUC were detected: P50 amplitude of transient pattern electroretinogram, 1° (AUC 0.93, p=0.002), P1 component of steady-state pattern electroretinogram (AUC 0.92, p=0.003), P100 amplitude of pattern visual evoked potential, 1° (AUC 0.84, p=0.013), wiVD macula superficial (AUC 0.80, p=0.001), wiVD Disc (AUC 0.74, p=0.016), GCC (AUC 0.74, p=0.016) and to distinguish early POAG from the moderate to advanced POAG: inferotemporal peripapillary VD (AUC 0.94, p<0.0001) and focal loss volume of GCC (AUC 0.92, p<0,001).

CONCLUSIONS: Our results demonstrate the importance of measuring the microcirculation parameters in the macular area along with PERGs and PVEPs for the early detection of glaucoma. VD in the inferotemporal sector of the peripapillary retina and focal loss volume of GCC are important for monitoring of the disease. The inclusion of OCTA, PERGs and PVEPs in glaucoma diagnostics may improve its early detection and monitoring. 

About the Authors

N. I . Kurysheva
Consultative-Diagnostic Department of the Ophthalmological Center of the Federal Medical and Biological Agency of the Russian Federation, A.I. Burnazyan Federal Medical and Biophysical Center of FMBA; Ophthalmological Department of the Institute of Improvement of Professional Skill of FMBA
Russian Federation

Med.Sc.D., Professor; Head of the Diagnostic Department of the Ophthalmological Center

15 Gamaleya St., Moscow, Russian Federation, 123098



E. V. Maslova
Consultative-Diagnostic Department of the Ophthalmological Center of the Federal Medical and Biological Agency of the Russian Federation, A.I. Burnazyan Federal Medical and Biophysical Center of FMBA; Ophthalmological Department of the Institute of Improvement of Professional Skill of FMBA
Russian Federation

applicant of the Department

15 Gamaleya St., Moscow, Russian Federation, 123098



I. V. Zolnikova
Helmholtz National Medical Research Center for Eye Diseases of the Ministry of Health of Russian Federation
Russian Federation

Med.Sc.D., senior research associate

14/19 Sadovaya-Chernogriazskaya St., Moscow,  Russian Federation, 105062



A. V. Fomin
Tradomed-Invest
Russian Federation

clinical marketing director

3 Marksistkaya st., Moscow, Russian Federation, 109147



M. B. Lagutin
Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Department of Mathematical Statistics and Stochastic Processes
Russian Federation

assistant of the Department

GSP-1, 1 Leninskie Hills St., Moscow, Russian Federation, 119991



References

1. Hood D.C., Anderson S.C., Wall M., Kardon R.H., Raza A.S. A test of a linear model of glaucomatous structure-function loss reveals sources of variability in retinal nerve fiber and visual field measurement. Invest Ophthalmol Vis Sci. 2009; 50:4254-4255. https://doi. org/10.1167/iovs.08-2697

2. Ojima T., Tanabe T., Hangai M., Yu.S., Morishita S., Yoshimura N. Measurement of retinal nerve fiber layer thickness and macular volume for glaucoma detection using optical coherence tomography. Japan J Ophthalmol. 2007; 51:197-203. https://doi.org/10.1007/ s10384-006-0433-y

3. Nakatani Y., Higashide T., Ohkubo S., Hisashi T.H., Sugiya K. Evaluation of macular thickness and peripapillary retinal nerve fiber layer thickness for detection of early glaucoma using spectral domain optical coherence tomography. Glaucoma. 2011; 20:252-259. https://doi. org/10.1097/IJG.0b013e3181e079ed

4. Kurysheva N.I., Parshunina O.A., Shatalova E.O., Kiseleva T.N., Lagutin M.B., et al. Value of structural and hemodynamic parameters for the early detection of primary open-angle glaucoma. Curr Eye Res. 2016; 24:1-7. https://doi.org/10.1080/02713683.2016.1184281

5. Hayreh S.S. Blood flow in the optic head and factors that may influence it. Progress in Retinal and Eye Research. 2001; 20(5):595-624. https://doi.org/10.1016/S1350-9462(01)00005-2

6. Grieshaber M.C., Flammer J. Blood flow in glaucoma. Curr Opin Ophthalmol. 2005; 16:79-83. https://doi.org/10.1136/bjo.2006.103010

7. Kurysheva N.I., Kiseleva T.N., Hodak N.A. The study of bioelectricactivity and regional hemodynamics in glaucoma. Klinicheskaya oftalmologiya. 2012; 3:91-94. https://doi.org/10.1371/journal. pone.0201599

8. Flammer J., Orgul S. Optic nerve blood-flow abnormalities in glaucoma. Progress in Retinal and Eye Research. 1998; 17:267-289. https:// doi.org/10.21037/qims.2016.03.05

9. Grunwald J.E., Piltz J., Hariprasad S.M., DuPont J. Optic nerve and choroidal circulation in glaucoma. Invest Ophthalmol Vis Sci. 1998; 39:232-233.

10. Tobe L.A., Harris A., Hussain R.M., Eckert G., Huck A., Park J., et al. The role of retrobulbar and retinal circulation on optic nerve head and retinal nerve fiber layer structure in subjects with open-angle glaucoma over an 18-month period. Brit J Ophthalmol. 2005; 99:609-612. http://dx.doi.org/10.1136/bjophthalmol-2014-305780

11. Martinez A., Sanchez M. Predictive value of colour Doppler imaging in a prospective study of visual field progression in primary open-angle glaucoma. Acta Ophthalmol Scand. 2005; 83:716-722. https://doi. org/10.1111/j.1600-0420.2005.00567.x

12. Mokbel T.H., Ghanem A.A. Diagnostic value of color doppler imaging and pattern visual evoked potential in primary open-angle glaucoma. J Clin Exper Ophthalmol/ 20112:127. https://doi.org/10.4172/21559570.1000127

13. Jia Y., Morrison J.C., Tokayer J., Tan O., Lombardi L., Baumann B. et al. Quantitative OCT angiography of optic nerve head blood flow. Biomed Optics Exp. 2012; 3:3127-3137. https://doi.org/10.1364/ BOE.3.003127

14. Jia Y., Wei E., Wang X., Zhang X., Morrison J.C., Parikh M. et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014; 121(7):1322-1332. https://doi.org/10. 1016/j.ophtha.2014.01.021

15. Wang X., Jiang C., Ko T., Kong X., Yu X., Min W. et al. Correlation between optic disc perfusion and glaucomatous severity in subjects with open-angle glaucoma: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol. 2015; 253:15571564. https://doi.org/10.1007/s00417- 015-3095-y

16. Liu L., Jia Y., Takusagawa H.L., Morrison J.C., Huang D. Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol. 2015; 133(9):1045-1052. https://doi.org/10. 1001/jamaophthalmol.2015.2225

17. Lee E.J., Lee K.M., Lee S.H., Kim T.W. OCT angiography of the peripapillary retina in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2016; 57:6265-6270. https://doi.org/10.1167/iovs.16-20287 18. Kurysheva N.I. Macula in Glaucoma: Vascularity Evaluated by OCT Angiography. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2016; 7(5):651-662.

18. Levêque P.M. Optic disc vascularization in glaucoma: value of spectral domain optical coherence tomography angiography. Ophthalmol. 2016, Article ID 6956717. https://doi.org/10.1155/2016/6956717

19. Yarmohammadi A., Zangwill L.M., Diniz-Filho A., Suh M.H., Manalastas P.I., Fatehee N. et al. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest Ophthalmol Vis Sci. 2016; 57:451-459. https://doi.org/10.1167/ iovs.15-18944

20. Rao H.L., Kadambi S.V., Weinreb R.N., Puttaiah N.K., Pradhan Z.S., Rao D.A. et al. Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma. Br J Ophthalmol. 2017; 101(8):1066-1070. https://doi.org/10.1136/bjophthalmol-2016- 309377

21. Hood D. Improving our understanding, and detection, of glaucomatous damage: An approach based upon optical coherence tomography (OCT). Progress in Retinal and Eye Research. 2017; 57:46-75. doi: 10.1016/j.preteyeres.2016.12.002

22. Hood D.C., Raza A.S., de Moraes C.G.V., Johnson C.A., Liebmann J.M., Ritch R. The nature of macular damage in glaucoma as revealed by averaging optical coherence tomography data. Trans Vis Sci Tech. 2012; 1:1-15. https://doi.org/10.1167/tvst.1.1.3

23. Bowd C., Tafreshi A., Zangwill L.M., Medeiros F.A., Sample P.A., Weinreb R.N. Pattern electroretinogram association with spectral domain-OCT structural measurements in glaucoma. Eye (Lond). 2011; 25(2):224-232. https://doi.org/10.1038/eye.2010.203

24. May J.G., Ralston J.V., Reed J.L., Van Dyk H.J.L. Loss in pattern-elicited electroretinograms in optic nerve dysfunction. Am J Ophthalmol. 1982; 93:418-422. https://doi.org/10.1016/0002-9394(82)90131-3 26. Bobak P., Bodis W.I, Harnois C., Maffei L., Mylin L. Pattern electroretinograms and visual-evoked potentials in glaucoma and multiple sclerosis. Am J Ophthalmol. 1983; 96:72-83. https://doi. org/10.1016/0002-9394(83)90457-9

25. Wanger P., Persson H.E. Pattern-reversal electroretinograms in unilateral glaucoma. Invest Ophthalmol Vis Sci. 1983; 24:749-753. https:// doi.org/10.1007/978-94-009-7275-9_41

26. Bach M., Hiss P., Ro êver J. Check-size specific changes of pattern electroretinogram in subjects with early open-angle glaucoma. Doc Ophthalmol. 1988; 69:315-322.

27. Parisi V., Miglior S., Manni G., Centofanti M., Bucci M.G.. Clinical ability of pattern electroretinograms and visual evoked potentials in detecting visual dysfunction in ocular hypertension and glaucoma. Ophthalmology. 2016; 113:216-228. https://doi.org/10.1016/j.ophtha.2005.10.044

28. Rejdak R., Toczolowski J., Kurkowski J., Kaminski M.L., Rejdak K., Stelmasiak Z. et al. Oral citicoline treatment improves visual pathway function in glaucoma. Med Sci Monit. 2003; 9:124-128.

29. Tong Y., Wang P., Xia Z., Xia X., Xu X. Color pattern reversal visual evoked potentials in primary open angle and angle closure glaucoma. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2009; 34:771-775.

30. Mills R.P., Budenz D.L., Lee P.P., Noecker R.J., Walt J.G., Evans S.J. et al. Categorizing the stage of glaucoma from pre-diagnosis to endstage disease. Am J Ophthalmol. 2006; 141:24-30. https://doi. org/10. 1016/j.ajo.2005.07.044

31. Chang E., Goldberg J. Glaucoma 2.0: Neuroprotection, Neuroregeneration, Neuroenhancement. Ophthalmology. 2012; 119(5):979-986. https://doi.org/10.1016/j.ophtha.2011.11.003

32. Headache Classification Committee of the International Headache Society. Classification and diagnostic criteria for headache disorders, cranial neuralgias and facial pain. Cephalalgia. 1988; 8(1):96. https://doi.org/10.1177/0333102417738202

33. Garway-Heath D.F., Poinoosawmy D., Fitzke F.W., Hitchings R.A. Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology. 2000; 107(10):1809-1815. https://doi. org/10.1016/S0161-6420(00)00284-0

34. Odom J.V., Bach M., Brigell M., Holder G.E., McCulloch D.L.L., Mizota A. et al. ISCEV standard for clinical visual evoked potentials. Doc Ophthalmol. 2016; 133(1):1-9. https://doi.org/10.1007/s10633-016- 9553-y

35. Bach M., Brigell M.G., Hawlina M., Holder G.E., Johnson M.A., McCulloch D.L. et al. ISCEV standard for clinical pattern electroretinography (PERG) – 2012 update. Doc Ophthalmol. 2013; 126:1-7. https://doi.org/ 10.1007/s10633-012-9353

36. Ventura L.M., Porciatti V. Restoration of retinal ganglion cell function in early glaucoma after intraocular pressure reduction: a pilot study. Ophthalmology. 2005; 112(1):20-27. https://doi.org/10.1016/j. ophtha.2004.09.002

37. Bach M., Hoffmann M.B. Update on the pattern electroretinogram in glaucoma. Optom Vis Sci. 2008; 85:386-395. https://doi. org/10.1097/OPX.0b013e318177ebf3

38. Bach M., Poloschek C.M. Electrophysiology and glaucoma: current status and future challenges. Cell Tissue Res. 2013; 353:287-296. https://doi.org/10.1007/s00441-013-1598-6

39. Bach M., Ramharter-Sereinig A. Pattern electroretinogram to detect glaucoma: comparing the PERGLA and the PERG Ratio protocols. Doc Ophthalmol. 2013; 127:227-238. https://doi.org/10.1007/ s10633- 013-9412-z

40. Porciatti V. Electrophysiological assessment of retinal ganglion cell function. Exp Eye Res. 2015; 141:164-170. https://doi.org/10.1016/j. exer.2015.05.008

41. Bode S.F., Jehle T., Bach M. Pattern electroretinogram in glaucoma suspects: new findings from a longitudinal study. Invest Ophthalmol Vis Sci. 2011; 52:4300-4306. https://doi.org/10.1167/iovs.10-6381 44. Porciatti V., Bosse B., Parekh P.K., Shuf O.A., Feuer W.J., Venture L.M. Adaptation of the Steady-state PERG in early glaucoma. J Glaucoma. 2014; 23(8):494-500. https://doi.org/10.1097/IJG. 0b013e318285fd95

42. Pfeiffer N., Tillmon B., Bach M. Predictive value of the pattern electroretinogram in high risk ocular hypertension. Invest Ophthalmol Vis Sci. 1993; 34:1710-1715

43. He Z.J. The qualitative and quantitative diagnostic significance of P-VEP in the evaluation of glaucomatous visual function damage. Zhonghua Yan KeZaZhi. 1991; 27(1):25-29.

44. Holder G.E. Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog Retin Eye Res. 2001; 20:531-561. https://doi.org/10.1016/S1350-9462(00)00030-6

45. Viswanathan S., Frishman L.J., Robson J.G. The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Invest Ophthalmol Vis Sci. 2000; 41:2797-2810.

46. Luo X., Frishman L. Retinal pathway origins of the pattern electroretinogram (PERG). Invest Ophthalmol Vis Sci. 2011; 52(12):8571-8584. https://doi.org/10.1167/iovs.11-8376

47. Xu H., Yu J., Kong X., Sun X., Jiang C. Macular microvasculature alterations in subjects with primary open-angle glaucoma. Medicine (Baltimore). 2016; 95(33):e434. https://doi.org/10.1097/ MD.0000000000004341

48. Kurysheva N.I., Maslova E.V., Trubilina A.V., Fomin A.V., Likhvantseva V.G., Lagutin M.B. OCT angiography and color doppler imaging in glaucoma diagnostics. J Pharm Sci Res. 2017; 9(5):527-536.

49. Chihara E., Dimitrova G., Amano H., Chihara T. Discriminatory power of superficial vessel density and prelaminar vascular flow index in eyes with glaucoma and ocular hypertension and normal eyes. Invest Ophthalmol Vis Sci. 2017; 58:690-697. https://doi. org/10.1167/iovs.16-20709

50. Yu D.Y., Cringle S.J. Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog Retin Eye Res. 2001; 20:175-208. https://doi. org/10.1016/S1350-9462(00)00027-6

51. Takusagawa H.L., Liu L., Ma K., Jia Y., Zhang M., Gao S., et al. Projection-resolved optical coherence angiography of macular retinal circulation in glaucoma. Ophthalmology. 2017; 124(11):1589-1599. doi: 10.1016/j.ophtha.2017.06.002

52. Rao H.L., Pradhan Z.S., Weinreb R.N., Reddy H.B., Riyazuddin M., Dasari S. et al. Regional comparisons of optical coherence tomography angiography vessel density in primary open-angle glaucoma. Am J Ophthalmol. 2016; 171:75-83. https://doi.org/10.1016/j. ajo.2016.08.030

53. Hollo G. Influence of large intraocular pressure reduction on peripapillary OCT vessel density in ocular hypertensive and glaucoma eyes. J Glaucoma. 2017; 26:7-10. https://doi.org/10.1097/ IJG.0000000000000527

54. Scripsema N.K., Garcia P.M., Bavier R.D., Chui T.Y., Krawitz B.D., Mo S., et al. Optical coherence tomography angiography analysis of perfused peripapillary capillaries in primary open-angle glaucoma and normal — tension glaucoma. Invest Ophthalmol Vis Sci. 2016; 57:611620. https://doi.org/10.1167/iovs.15-18783

55. Bowd C., Zangwill L.M., Berry C.C., Blumenthal E.Z., Vasile C., Snachez-Galeana C. et al. Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function. Invest Ophthalmol Vis Sci. 2001; 42:1993-2003.

56. Quigley H.A., Addicks E.M., Green W.R., Maumenee A.E. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol Chic. 1981; 99:635-649. https://doi. org/10.1001/archopht.1981.03930010635009

57. Pechauer A.D., Jia Y., Liu L., Gao S., Jiang C., Huang D. Optical coherence tomography angiography of peripapillary retinal blood flow response to hyperoxia. Invest Ophthalmol Vis Sci. 2015; 56:3287-3291. https://doi.org/10.1167/iovs.15-16655

58. Falsini B., Colotto A., Porciatti V., Bolzani R., Porrello G., Giudiceandrea A. Follow-up study with pattern ERG in ocular hypertension and glaucoma subjects under timolol maleate treatment. Clin Vis Sci. 1992; 7:341-347.

59. Ventura L., Porciatti V., Ishida K., Feuer W.J., Parrish R.K. Pattern electroretinogram abnormality and glaucoma. Ophthalmology. 2005; 1:20-27. https://doi.org/10.1016/j.ophtha.2004.07.018

60. Papst N., Bopp M., Schnaudigel O. The pattern evoked electroretinogram associated with elevated intraocular pressure. Graefes Arch Clin Exp Ophthalmol. 1984; 222:34-37. https://doi.org/10.1007/ BF02133775

61. Nesher R., Trick G.L., Kass M.A., Gordon M.O. Steady-state pattern electroretinogram following long term unilateral administration of timolol to ocular hypertensive subjects. Doc Ophthalmol. 1990; 75:101-109. https://doi.org/10.1007/BF00146546

62. Colotto A., Salgarello T., Giudiceandrea A., De Luca L.A., Coppe A., Buzzonetti L. et al. Pattern electroretinogram in treated ocular hypertension: a cross-sectional study after timolol maleate the- rapy. Ophthalmic Res. 1995; 27:168-177. https://doi.org/10.1159/ 000267663

63. Banitt M., Ventura L., Feuer W.J., Savatovsky E., Luna G., Shif O. et al. Progressive loss of retinal ganglion cell function precedes structural loss by several years in glaucoma suspects. Invest Ophthalmol Vis Sci. 2013; 54:2346-2352. https://doi.org/10.1167/iovs.12-11026

64. Kremmer S., Tolksdorf-Kremmer A., Stodtmeister R.. Simultaneous registration of VECP and pattern ERG during artificially raised intraocular pressure. Ophthalmologica. 1995; 209(5):233-241 https://doi. org/10.1159/000310622

65. Bowd C., Tafreshi A., Zangwill L.M., Medeiros F.A., Sample P.A., Weinreb R.N. Pattern electroretinogram association with spectral domainOCT structural measurements in glaucoma. 2011; 25:224. https:// doi.org/10.1038/eye.2010.203 Поступила / Received / 18.07.2019


Review

For citations:


Kurysheva N.I., Maslova E.V., Zolnikova I.V., Fomin A.V., Lagutin M.B. A comparative study of structural, functional and circulatory parameters in glaucoma diagnostics. National Journal glaucoma. 2019;18(4):15-34. (In Russ.) https://doi.org/10.25700/NJG.2019.04.02

Views: 1080


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)