Preview

National Journal glaucoma

Advanced search

Intraoperative use of antimetabolites in glaucoma surgery

https://doi.org/10.25700/NJG.2020.01.06

Abstract

Glaucoma is the main cause of irreversible blindness worldwide, the treatment of which is based on reducing intraocular pressure to tolerant values. Despite the development of medication and laser methods, surgery remains the most effective means of glaucoma treatment, while trabeculectomy remains the golden standard of surgery. However, postoperative scarring remains a critical determinant of long-term bleb survival and IOP control after drainage surgery. Antimetabolites, such as mitomycin C and 5-fluorouracil, have been used to increase the survival time of filtration surgeries by preventing bleb fibrosis and scarring. Mitomycin C is activated via enzymatic reduction into metabolites that inhibit cell replication by inhibiting DNA synthesis, RNA transcription, and protein synthesis. In tissue culture, MMC induces apoptosis of tenon fibroblasts. MMC blocks cell division, which in turn inhibits fibroblast proliferation and enhances bleb formation and function.

This review includes a literature analysis on the use of antimetabolites in glaucoma surgery. Based on the data and literary sources of recent years, a general understanding of the mechanism of action of MMS and the need for its use in the course of AGO, but exclusively with low doses and short exposure times, has been achieved, which will reduce the frequency of complications associated with excessive filtration, but at the same time prevent the development of excessive scarring.

About the Authors

A. B. Zahidov
PE "SAIF-OPTIMA" Eye Microsurgery Clinic
Russian Federation
Ph.D., ophthalmologist


A. V. Seleznev
State Medical Academy
Russian Federation
Ph.D., Assistant Professor


I. R. Gazizova
North-West Federal Medical and Research Center
Russian Federation
Med.Sc.D., Head of Ophthalmological Department


A. V. Kuroyedov
Mandryka Central Clinical Hospital, Pirogov Russian National Research Medical University
Russian Federation
Med.Sc.D., Head of Ophthalmological Department, Chair of Ophthalmology


S. Yu. Petrov
Scientific Research Institute of Eye Diseases
Russian Federation
Med.Sc.D., Leading Research Associate of Glaucoma Department


U. R. Karimov
Syrdarya Regional Ophthalmic Hospital
Russian Federation
Ph.D.


References

1. Resnikoff S., Pascolini D., Etya’ale D. et al. Global data on visual impairment in the year 2002. Bull WHO. 2004; 82(11):844–851.

2. Pascolini D., Mariotti S.P. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012; 96:614–618. doi:10.1136/bjophthal- mol-2011-300539

3. Quigley H.A., Broman A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006; 90:262–267. doi:10.1136/bjo.2005.081224

4. Luu J., Palczewski K. Human aging and disease: lessons from agerelated macular degeneration. Proceedings of the National Academy of Sciences. 2018; 115:2866–2872. doi:10.1073/pnas.1721033115

5. Promelle V., Daouk J., Bouzerar R. et al. Ocular blood flow and cerebrospinal fluid pressure in glaucoma. Acta Radiol Open. 2016; 5(2):2058460115624275

6. Goyal A., Srivastava A., Sihota R. et al. Evaluation of oxidative stress markers in aqueous humor of primary open angle glaucoma and pri- mary angle closure glaucoma patients. Curr Eye Res. 2014; 39:823– 829. doi:10.3109/02713683.2011.556299

7. Gherghel D., Mroczkowska S., Qin L. Reduction in blood glutathione levels occurs similarly in patients with primary-open angle or normal tension glaucoma. Invest Ophthalmol Vis Sci. 2013; 54:3333–3339. doi:10.1167/iovs.12-11256

8. Jonas J.B., Ohno-Matsui K., Panda-Jonas S. Optic nerve head histopa- thology in high axial myopia. J Glaucoma. 2017; 26:187–193.

9. Peters D., Bengtsson B., Heijl A. Factors associated with lifetime risk of open-angle glaucoma blindness. Acta Ophthalmol. 2014; 92:421–425. doi:10.1111/aos.12203

10. Burr J., Azuara-Blanco A., Avenell A. et al. Medical versus surgical interventions for open angle glaucoma. Cochrane Database Syst Rev. 2012; 12(9):CD004399. doi: 10.1002/14651858

11. Garway-Heath D.F., Crabb D.P., Bunce C. et al. Latanoprost for openangle glaucoma (UKGTS): a randomised, multicentre, placebo-con- trolled trial. Lancet. 2015; 385:1295–1304. doi:10.1016/S0140- 6736(14)62111-5

12. King A., Azuara-Blanco A., Tuulonen A. Glaucoma. BMJ. 2013; 346: f3518. doi:10.1136/bmj.f3518

13. European Glaucoma Society. Terminology and Guidelines for Glauco- ma. 4th ed. Savona, Italy: PubliComm; 2014. doi:10.1136/bjophthal- mol-2016-egsguideline.001

14. American Academy of Ophthalmology. Preferred Practice Pattern, Primary open-angle glaucoma Preferred Practice Pattern guide- lines. Ophthalmology. 2016; 18;123(1):41–111. doi:10.1016/j.oph-tha.2015.10.053

15. Stalmans I., Gillis A., Lafaut A.S. et al. Safe trabeculectomy technique: long term outcome. Br J Ophthalmol. 2006; 90:44–47. doi:10.1136/ bjo.2005.072884

16. Khaw P.T., Chiang M., Shah P. et al. Enhanced trabeculectomy: the moorfields safer surgery system. Dev Ophthalmol. 2012; 50:1–28. doi:10.1159/000334776

17. Fan Gaskin J.C., Nguyen D.Q. et al. Wound healing modulation in glaucoma filtration surgery-conventional practices and new perspec- tives: the role of antifibrotic agents (Part I). J Curr Glaucoma Practice. 2014; 8(2):37–45. doi:10.5005/jp-journals-10008-1159

18. Zhou M., Wang W., Huang W. et al. Trabeculectomy with versus with- out releasable sutures for glaucoma: a meta-analysis of randomized controlled trials. BMC Ophthalmol. 2014; 14:41. doi:10.1186/1471- 2415-14-41

19. King A.J., Rotchford A.P., Alwitry A. et al. Frequency of bleb manipu- lations after trabeculectomy surgery. Br J Ophthalmol. 2007; 91:873– 877. doi:10.1136/bjo.2006.109835

20. Kirwan J.F., Lockwood A.J., Shah P. et al. Trabeculectomy in the 21st century: a multicenter analysis. Ophthalmology. 2013; 120:2532– 2539. doi:10.1016/j.ophtha.2013.07.049

21. Murdoch I. Post-operative management of trabeculectomy in the first three months. Community Eye Health. 2012; 25(79-80):73–75.

22. Wakaki S., Marumo H., Tomiaka K. et al. Isolation of new fractions of antitumor mitomycin. Antibiotics & Chemotherary. 1958; 8:228–240.

23. Kanamori Н., Shima Т., Morita Ch., Hata Т. Studies on antitumor activity of mitomycin. J Antibiot. 1957; 10:120.

24. Salmon S.E., Sartorelli A.C. Cancer chemotherapy. In: Katsung B.G., ed. Basic Clin Pharmacol. 1987:680–681.

25. Siegel D., Yan C., Ross D. NAD(P)H:quinone oxidoreductase 1 (NQO1) in the sensitivity and resistance to antitumor quinones. Biochem Phar- macol. 2012; 83(8):1033–1040.

26. Jampel H.D. Effect of brief exposure to mitomycin C on viability and proliferation of cultured human Tenon’s capsule fibroblasts. Ophthal- mology. 1992; 99(9):1471–1476.

27. Furtado J.M., Paula J.S., Soares E.G. et al. Perioperative conjunctival inflammation and trabeculectomy outcome. Ocul Immunol Inflamm. 2014; 22:183–188. doi: 10.3109/09273948.2013.844263

28. Yamamoto T., Varani J., Soong H.K., Lichter P.R. Effects of 5-fluoro- uracil and mitomycin C on cultured rabbit subconjunctival fibroblasts. Ophthalmology. 1990; 97(9):1204–1210.

29. Manners T., Salmon J.F., Barron A., Willies C., Murray A.D. Trabeculectomy with mitomycin C in the treatment of post-traumatic angle recession glaucoma. Br J Ophthalmol. 2001; 85(2):159–163.

30. Petrov S.Y. Modern methods of controlling wound healing after fistu- lizing glaucoma surgery. Risk factors and antimetabolites. Ophthal- mology in Russia. 2017; 14(1):5-11. (In Russ.). doi:10.18008/1816- 5095-2017-1-5-11

31. Mercieca K., Drury B., Bhargava A., Fenerty C. Trabeculectomy bleb needling and antimetabolite administration practices in the UK: a glaucoma specialist national survey. Br J Ophthalmol. 2018; 102(9): 1244-1247. doi: 10.1136/bjophthalmol-2017-310812

32. Matlach J., Panidou E., Grehn F., Klink T. Large-area versus small-area application of mitomycin C during trabeculectomy. Eur J Ophthalmol. 2013; 23(5):670–677.

33. Onol M., Aktaş Z., Hasanreisoglu B. Enhancement of the success rate in trabeculectomy: large-area mitomycin-C application. Clin Exper Ophthalmol. 2008; 36(4):316–322.

34. Zhang M., Li B., Wang J. et al. Subconjunctival versus intrascleral application of mitomycin C during trabeculectomy. Invest Ophthalmol Vis Sci. 2014; Jul 21. doi: 10.1167/iovs.14-14159

35. Agarwal H.C., Saigal D., Sihota R. Assessing the role of subconjuncti- val versus intrascleral application of mitomycin-C in high-risk trabecu- lectomies. Indian J Ophthalmol. 2001; 49(2):91–95.

36. Pakravan M., Esfandiari H., Yazdani S. et al. Mitomycin C-augment- ed trabeculectomy: subtenon injection versus soaked sponges: a ran- domised clinical trial. Br J Ophthalmol. 2017; 101:1275–1280. doi: 10.1136/bjophthalmol-2016-309671

37. Schraermeyer U., Diestelhorst M., Bieker A. et al. Morphologic proof of the toxicity of mitomycin C on the ciliary body in relation to dif- ferent application methods. Graefes Arch Clin Exp Ophthalmol. 1999; 237(7):593–600.

38. Al Habash A., Aljasim L.A., Owaidhah O., Edward D.P. A review of the efficacy of mitomycin C in glaucoma filtration surgery. Clin Ophthalmol. 2015; 9:1945–1951. Published 2015 Oct 20. doi:10.2147/OPTH.S80111

39. Hoang T., Kim Y.K., Jeoung J.W., Park K.H. Relationship between age and surgical success after trabeculectomy with adjunctive mito- mycin C. Eye (London). 2018; 32(8):1321–1328. doi:10.1038/s41433- 018-0071-x

40. Desai M.A., Gedde S.J., Feuer W.J., Shi W., Chen P.P., Parrish R.K. Practice preferences for glaucoma surgery: a survey of the Ameri- can Glaucoma Society in 2008. Ophthalmic Surg Lasers Imag. 2011; 42(3):202–208.

41. Rajendrababu Sh., Shroff S., Patil S.V., Uduman M.S., Vardhan A., Krishnadas S.R. Surgical outcomes of repeat trabeculectomy augment- ed with high dose mitomycin C. Indian J Ophthalmol. 2019; 67(1):95- 100. doi:10.4103/ijo.IJO_682_18

42. Masoumpour M., Nowroozzadeh M.H., Razeghinejad M.R. Cur- rent and future techniques in wound healing modulation after glau- coma filtering surgeries. Open Ophthalmol J. 2016; 10(2):68-85. doi:10.2174/1874364101610010068

43. Cabourne E., Clarke J.CK., Schlottmann P.G., Evans J.R. Mitomy- cin C versus 5-Fluorouracil for wound healing in glaucoma surgery. Cochrane Database of Systematic Reviews. 2015; 11:CD006259. doi: 10.1002/14651858

44. Sihota R., Angmo D., Chandra A., Gupta V. et al. Evaluating the longterm efficacy of short-duration 0.1 mg/ml and 0.2 mg/ml MMC in pri- mary trabeculectomy for primary adult glaucoma. Graefes Arch Clin Exp Ophthalmol. 2015; 253(7):1153-1159. doi: 10.1007/s00417-015-3028-9

45. Khandelwal R., Bijlani M., Raje D., Rathi A. Evaluating the efficacy of short duration Mitomycin C in safe surgery system trabeculectomy combined with cataract surgery. Clin Ophthalmol. 2019; 13:849–857. doi:10.2147/OPTH.S192044

46. Casson R., Rahman R., Salmon J.F. Long term results and complica- tions of trabeculectomy augmented with low dose mitomycin C in patients at risk for filtration failure. Br J Ophthalmol. 2001; 85:686- 688. doi: 10.1136/bjo.85.6.686

47. Singh J., O’Brien C., Chawla H.B. Success rate and complications of intraoperative 0.2 mg/mL mitomycin C in trabeculectomy surgery. Eye (Lond). 1995; 9(4):460–466.

48. Razeghinejad M.R., Fudemberg S.J., Spaeth G.L. The changing con- ceptual basis of trabeculectomy: a review of past and current surgical techniques. Surv Ophthalmol. 2012; 57(1):1–25.

49. Xu J.G., Zhong J., Yang Y.F., Lin M.K. et al. Efficacy of autologous conjunctival flap on repairing the late-onset filtering bleb leakage. International J Ophthalmol. 2018; 11(4):601-606. doi:10.18240/ ijo.2018.04.10


Review

For citations:


Zahidov A.B., Seleznev A.V., Gazizova I.R., Kuroyedov A.V., Petrov S.Yu., Karimov U.R. Intraoperative use of antimetabolites in glaucoma surgery. National Journal glaucoma. 2020;19(1):40-45. (In Russ.) https://doi.org/10.25700/NJG.2020.01.06

Views: 914


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)