Changes in the elemental composition of aqueous humour outflow pathways in primary open-angle glaucoma
https://doi.org/10.25700/NJG.2020.03.01
Abstract
PURPOSE: There are two primary aims of this study:
1. To perform a comparative chemical analysis of aqueous humour (AH), scleral tissue, and trabecular meshwork in patients with primary open-angle glaucoma (POAG).
2. To evaluate the tissue’s chemical composition at the different POAG stages and with in patients with pseudoexfoliation glaucoma (PEG).
METHODS: The concentration of certain chemical elements — carbon (C), nitrogen (N), oxygen (O), aluminum (Al), calcium (Ca), chlorine (Cl), potassium (K), magnesium (Mg), sodium (Na), phosphorus (P), silicon (Si), sulfur (S) — was determined in the dried AH residue, trabecular meshwork and sclera biopsy samples obtained from patients with POAG (stage I and II), patients with pseudoexfoliation glaucoma (PEG), and patients with POAG without pseudoexfoliation material (PEM). Samples were analyzed using a scanning electron microscope (SEM) EVO LS 10 (“Zeiss”,Germany). The chemical composition study was performed with an energy-dispersive spectrometer (EDS) Oxford-XMAX-50 (“Oxford”,UK) in a low-vacuum mode (70 Pa) with an accelerating voltage of 21.5 kV.
RESULTS: In the case of POAG (stage I and II) patients, there were significant differences in Cl distribution in dried AH residue and Si distribution in the trabecular meshwork. In the case of pseudoexfoliative glaucoma (PEG) and patients with POAG without PEM, there was a difference in the N distribution in dried AH residue, as well as Ca, Cl, and Na distribution in the trabecular meshwork. During scleral tissue comparative chemical analysis, no significant changes in studied elements’ concentration between patient groups were evident.
CONCLUSION: Changes between stage II of POAG and stage III of POAG patient groups may indicate that there is an increase in the electrolyte and acid-base imbalance associated with the progression of the disease. Differences in chemical elements distribution in patients with PEG and in patients with POAG without PEM result from the molecular structure of PEM. The tissue’s water and salt balance and molecular chemical composition alterations provide the following insights for future research in finding the optimal treatment method for patients with all stages and types of glaucoma.
About the Authors
M. V. KravchikRussian Federation
Junior Research Associate
11A Rossolimo st., Moscow, 119021
I. A. Novikov
Russian Federation
Senior Research Associate
11A Rossolimo st., Moscow, 119021
A. M. Subbot
Russian Federation
Ph.D., Senior Research Associate
11A Rossolimo st., Moscow, 119021
S. Yu. Petrov
Russian Federation
Med.Sc.D., Leading Research Associate
11A Rossolimo st., Moscow, 119021
N. A. Pakhomova
Russian Federation
M.D.
11A Rossolimo st., Moscow, 119021
V. S. Podoprigora
Russian Federation
Ph.D., Assistent of Ophtalmology Department
References
1. Tauber F.W., Krause A.C. The role of iron, copper, zinc, and manganese in the metabolism of the ocular tissues, with special reference to the lens. Am J Ophthalmol. 1943; 26:260-266. doi:10.1016/s0002-9394(43)92830-2
2. De Azevedo M., De Jorge F. Some mineral constituents of normal human eye tissues (Na-K-Mg-Ca-P-Cu). Ophthalmologica. 1965; 149(1):43-52. doi:10.1159/000304729
3. Marshall A.T., Goodyear M.J., Crewther S.G. Sequential quantitative X-ray elemental imaging of frozen-hydrated and freeze-dried biological bulk samples in the SEM. J Microscopy. 2012; 245(1):17-25. doi:10.1111/j.1365-2818.2011.03539.x
4. McLaughlin C.W., Karl M.O., Zellhuber-McMillan S., Wang Z. et al. Electron probe X-ray microanalysis of intact pathway for human aqueous humor outf low. Am J Physiology-Cell Physiology. 2008; 295(5):1083-1091. doi:10.1152/ajpcell.340.2008
5. Lucia U., Grisolia G., Astori M.R. Constructal law analysis of Cl– transport in eyes aqueous humor. Scientific reports. 2017; 7(1):1-4. doi:10.1038/s41598-017-07357-8
6. Chi-ho To, Chi-wing Kong, Chu-yan Chan, Mohammad Shahidullah, Chi-wai Do. The mechanism of aqueous humour formation. Clin Exper Optom. 2002; 85(6):335-349. doi:10.1111/j.1444-0938.2002.tb02384.x
7. Becker B. Carbonic anhydrase and the formation of aqueous humor: The Friedenwald Memorial Lecture. Am J Ophthalmol. 1959; 47(1):342-361. doi:10.1016/s0002-9394(14)78041-9
8. Ritch R., Schlötzer-Schrehardt U. Exfoliation syndrome. Surv Ophthalmol. 2001; 45(4):265-315. doi:10.1016/s0039-6257(00)00196-x
9. Ermolaev A.P., Novikov I.A., Mel'nikova L.I., Griboedova I.G., Avetisov K.S. Elemental composition of aqueous humour and blood serum at various levels of intraocular pressure. Vestn oftalmol. 2016; 132(6):43-48. doi:10.17116/oftalma2016132643-48
10. Evenas J., Malmendal A., Forsen S. Calcium. Curr Opin Chem Biol. 1998; 2(2):293-302. doi:10.1016/s1367-5931(98)80072-0
11. Kielty C.M., Shuttleworth C.A. The role of calcium in the organization of fibrillin microfibrils. FEBS letters. 1993; 336(2):323-326. doi:10.1016/0014-5793(93)80829-j
12. Gipson I., Anderson R. Actin filaments in cells of human trabecular meshwork and Schlemm's canal. Invest Ophthalmol Vis Sci. 1979; 18(6):547-561.
13. de Kater A.W., Shahsafaei A., Epstein D.L. Localization of smooth muscle and non muscle actin isoforms in the human aqueous outflow pathway. Invest Ophthalmol Vis Sci. 1992; 33(2):424-429.
14. De Kater A., Spurr-Michaud S., Gipson I. Localization of smooth muscle myosin-containing cells in the aqueous outf low pathway. Invest Ophthalmol Vis Sci. 1990; 31(2):347-353.
15. Stumpff F., Wiederholt M. Regulation of trabecular meshwork contractility. Ophthalmologica. 2000; 214(1):33-53. doi:10.1159/000027471
16. Kopp C., Linz P., Dahlmann A., Hammon M. et al. 23Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients. Hypertension. 2013; 61(3):635-640. doi:10.1161/hypertensionaha.111.00566
17. Titze J. Sodium balance is not just a renal affair. Curr Opin Nephrology And Hypertension. 2014; 23(2):101. doi:10.1097/01.mnh.0000441151.55320.c3
18. Challa P., Johnson W.M. Composition of exfoliation material. J Glaucoma. 2018; 27 Suppl 1:29-31. doi:10.1097/IJG.0000000000000917
19. Schlötzer-Schrehardt U., Körtje K.-H., Erb C. Energy-filtering transmission electron microscopy (EFTEM) in the elemental analysis of pseudoexfoliative material. Curr Eye Res. 2001; 22(2):154-162. doi:10.1076/ceyr.22.2.154.5522
20. Schlötzer-Schrehardt U., Dorfler S., Naumann G.O. Immunohistochemical localization of basement membrane components in pseudoexfoliation material of the lens capsule. Curr Eye Res. 1992; 11(4):343-355. doi:10.3109/02713689209001788
21. Tawara A., Fujisawa K., Kiyosawa R., Inomata H. Distribution and characterization of proteoglycans associated with exfoliation material. Curr Eye Res. 1996; 15(11):1101-1111. doi:10.3109/02713689608995141
22. Arutyunov G., Dragunov D., Sokolova A., Papyshev I. et al. The effect of the level of total sodium deposited in the myocardium on its stiffness. Ther Arch. 2017; 89(1):32-37. doi:10.17116/terarkh201789132-37
23. Volpi N. Disaccharide analysis and molecular mass determination to microgram level of single sulfated glycosaminoglycan species in mixtures following agarose-gel electrophoresis. Anall Biochem. 1999; 273(2):229-239. doi:10.1006/abio.1999.4218
24. Titze J., Shakibaei M., Schafflhuber M., Schulze-Tanzil G. et al. Glycosaminoglycan polymerization may enable osmotically inactive Na+ storage in the skin. Am J Physiology-Heart and Circulatory Physiology. 2004; 287(1):203-208. doi:10.1152/ajpheart.01237.2003
Review
For citations:
Kravchik M.V., Novikov I.A., Subbot A.M., Petrov S.Yu., Pakhomova N.A., Podoprigora V.S. Changes in the elemental composition of aqueous humour outflow pathways in primary open-angle glaucoma. National Journal glaucoma. 2020;19(3):3-11. (In Russ.) https://doi.org/10.25700/NJG.2020.03.01