Preview

National Journal glaucoma

Advanced search

Morphologic basis of the refraction shift after penetrating glaucoma surgery

https://doi.org/10.25700/NJG.2020.02.01

Abstract

PURPOSE: To study the morphological basis of a refraction shift that occurs after penetrating glaucoma surgery.

METHODS: The study included 45 patients with progressive primary open-angle glaucoma, who underwent trabeculectomy. We examined patients prior to surgery, one week, one month and three months after the surgery. The patients underwent visual acuity check, tonometry, measurements of biomechanical properties of the fibrous tunic of the eye, its axial length (AL), anterior chamber depth (ACD), lens thickness (LT) and pupil width. Refractometry and keratometry were also performed, including corneal curvature in steep and flat meridians (R1, R2), its average curvature (Ave), and the corneal cylinder.

RESULTS: Most of the significant changes occurred during the first week after surgery. Myopic shift continued to develop during the whole observation period: sphere increased from -0.2 [-1.19; 1.25] diopters to -0.68 [-2.61; -0.32] diopters by the third month. During the first week the cylinder increased from -0.54 diopters to -1.13 diopters, returning to previous condition by month 3 (-0.62 [-1.6; -0.28] diopters). Corneal cylinder value correlated with total astigmatism up to the end of the first month, then it increased again up to -1.13 [-1.81; -0.94] diopters by month 3. During all the observation period regular astigmatism prevailed, R1 and R2 changed in tandem, which complicated the analysis of corneal cylinder genesis. Intraocular pressure (IOP) decreased from 24.8 [21.2; 29.0] to 9.2 [4.95; 16.2] mm Hg during the first week, then it remained within the range of 10-17 mm Hg. Change of biomechanical properties (corneal hysteresis, corneal resistance factor) showed the decrease of the fibrous tunic inner tension, consequent to IOP compensation after surgery. AL decreased by 0.11 [0.06; 0.22] mm during the first week, then it showed an insignificant opposite trend. Simultaneously ACD decreased from 2.45 [2.23; 2.64] to 2.39 [1.95; 2.65] mm, also followed by a subsequent insignificant opposite trend. Pupil width during the first week increased from 3.03 [2.69; 3.38] to 3.63 [2.20; 4.06] mm; then the pupil resumed its diameter by half. The spherical component had a negative correlation with AL and ACD. Total astigmatism correlated with the corneal one. Its delta correlated with the delta of the corneal cylinder power and, more weakly, with the preoperative cylinder power.

CONCLUSION: A myopic shift with temporary astigmatism occurs after trabeculectomy. The refraction shift depends mostly on the biometric parameters of the eye. Induced astigmatism is mostly corneal in nature.

About the Authors

A. V. Volzhanin
Scientific Research Institute of Eye Diseases
Russian Federation

Postgraduate student of Glaucoma Department

11A Rossolimo st., Moscow, 119021



S. Yu. Petrov
Scientific Research Institute of Eye Diseases
Russian Federation

Med.Sc.D., senior research associate of Glaucoma Department

11A Rossolimo st., Moscow, 119021



E. G. Ryzhkova
Scientific Research Institute of Eye Diseases
Russian Federation

Junior research associate of the Department of Modern Treatment Methods in Ophthalmology

11A Rossolimo st., Moscow, 119021



D. M. Safonova
Scientific Research Institute of Eye Diseases
Russian Federation

Ph.D., junior research associate of the Department of Modern Treatment Methods in Ophthalmology

11A Rossolimo st., Moscow, 119021



V. V. Averich
Scientific Research Institute of Eye Diseases
Russian Federation

Ph.D., junior research associate of the Refractive Disorders Department

11A Rossolimo st., Moscow, 119021



References

1. Tham Y.C., Li X., Wong T.Y., Quigley H.A., Aung T., Cheng C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014; 121(11):2081-2090. doi:10.1016/j.ophtha.2014.05.013

2. Wang W., He M., Li Z., Huang W. Epidemiological variations and trends in health burden of glaucoma worldwide. Acta Ophthalmol. 2019; 97(3):e349-e355. doi:10.1111/aos.14044

3. Terminology and guidelines for glaucoma: European glaucoma society. 4th edition. Savona, Italy. 2014.

4. National guidelines of glaucoma for practicing doctors: 3rd edition, revised and updated. Edited by Egorov E.A., Astakhov Yu.S., Erichev V.P. Moscow, GEOTAR-Media Publ., 2015. 456 p. (In Russ.).

5. Egorov E.A., Kuroyedov A.V., Gorodnichiy V.V., Petrov S.Yu., Kamenskikh T.G. et al. Early and long-term outcomes of glaucoma surgery: the results of multicenter study of CIS countries. RMJ Clinical Ophthalmology 2017; 17(1):25-34. (In Russ.). doi: 10.21689/2311-7729-2017-17-1-25-34

6. Sihota R., Shakrawal J., Sidhu T., Sharma A.K., Dada T., Pandey V. Does Trabeculectomy meet the 10-10-10 challenge in PACG, POAG, JOAG and Secondary glaucomas? Int Ophthalmol. 2020. doi:10.1007/s10792-020-01289-5

7. Abysheva L.D., Alexandrov A.S., Arapiev M.U. Optimization of diagnosis and treatment options in primary open-angle glaucoma patients. Natsional’nyi zhurnal glaukoma. 2016; 15(2):19-34. (In Russ.).

8. Kandel H., Khadka J., Goggin M., Pesudovs K. Patient-reported outcomes for assessment of quality of life in refractive error: a systematic review. Optom Vis Sci. 2017; 94(12):1102-1119. doi:10.1097/OPX.0000000000001143

9. Lou L., Yao C., Jin Y., Perez V., Ye J. Global patterns in health burden of uncorrected refractive error. Invest Ophthalmol Vis Sci. 2016; 57(14):6271-6277. doi:10.1167/iovs.16-20242

10. Naidoo K.S., Leasher J., Bourne R.R., Flaxman S.R., Jonas J.B., Keeffe J., Limburg H., Pesudovs K., Price H., White R.A., Wong T.Y., Taylor H.R., Resnikoff S., Vision Loss Expert Group of the Global Burden of Disease S. Global Vision Impairment and Blindness Due to Uncorrected Refractive Error, 1990-2010. Optom Vis Sci. 2016; 93(3):227-234. doi:10.1097/OPX.0000000000000796

11. Hirooka K., Nitta E., Ukegawa K., Tsujikawa A. Vision-related quality of life following glaucoma filtration surgery. BMC Ophthalmol. 2017; 17(1):66. doi:10.1186/s12886-017-0466-7

12. Snellen H. Die richtung der hauptmeridian de astigmatischen auges. Albrecht von Graæfes Archiv Ophthalmol. 1869; 15:199.

13. Hugkulstone C.E. Changes in keratometry following trabeculectomy. Br J Ophthalmol. 1991; 75(1):217-218.

14. Pakravan M., Alvani A., Esfandiari H., Ghahari E., Yaseri M. Posttrabeculectomy ocular biometric changes. Clin Exp Optom. 2017; 100(2):128-132. doi:10.1111/cxo.12477

15. Alvani A., Pakravan M., Esfandiari H., Safi S., Yaseri M., Pakravan P. Ocular biometric changes after trabeculectomy. J Ophthalmic Vis Res. 2016; 11(3):296-303. doi:10.4103/2008-322X.188399

16. Chan H.H.L., Kong Y.X.G. Glaucoma surgery and induced astigmatism: a systematic review. Eye Vis (Lond). 2017; 4:27. doi:10.1186/s40662-017-0090-x

17. Cunliffe I.A., Dapling R.B., West J., Longstaff S. A prospective study examining the changes in factors that affect visual acuity following trabeculectomy. Eye (Lond). 1992; 6(Pt 6):618-622. doi:10.1038/eye.1992.133

18. Hong Y.J., Choe C.M., Lee Y.G., Chung H.S., Kim H.K. The effect of mitomycin-C on postoperative corneal astigmatism in trabeculectomy and a triple procedure. Ophthalmic Surg Lasers. 1998; 29(6):484-489.

19. Neroev V.V., Aliev A.A.-G., Nurudinov M.M. Comparative analysis of optical aberrations, anatomical and optical parameters of the cornea in glaucoma surgery. Rossiyskiy oftalmologicheskiy zhurnal. 2018; 4: 24-28. (In Russ.).

20. Delbeke H., Stalmans I., Vandewalle E., Zeyen T. The effect of trabeculectomy on astigmatism. J Glaucoma. 2016; 25(4):e308-312. doi:10.1097/IJG.0000000000000236

21. Chen S., Wang W., Gao X., Li Z., Huang W., Li X., Zhou M., Zhang X. Changes in choroidal thickness after trabeculectomy in primary angle closure glaucoma. Invest Ophthalmol Vis Sci. 2014; 55(4):2608-2613. doi:10.1167/iovs.13-13595

22. Francis B.A., Wang M., Lei H., Du L.T., Minckler D.S., Green R.L., Roland C. Changes in axial length following trabeculectomy and glaucoma drainage device surgery. Br J Ophthalmol. 2005; 89(1):17-20. doi:10.1136/bjo.2004.043950

23. Kara N., Baz O., Altan C., Satana B., Kurt T., Demirok A. Changes in choroidal thickness, axial length, and ocular perfusion pressure accompanying successful glaucoma filtration surgery. Eye (Lond). 2013; 27(8):940-945. doi:10.1038/eye.2013.116

24. van Rij G., Waring G.O., 3rd. Changes in corneal curvature induced by sutures and incisions. Am J Ophthalmol. 1984; 98(6):773-783. doi:10.1016/0002-9394(84)90697-4

25. Sakamoto M., Matsumoto Y., Mori S., Ueda K., Inoue Y., Kurimoto T., Kanamori A., Yamada Y., Nakamura M. Excessive scleral shrinkage, rather than choroidal thickening, is a major contributor to the development of hypotony maculopathy after trabeculectomy. PLoS One. 2018; 13(1):e0191862. doi:10.1371/journal.pone.0191862

26. Ivanov D.F., Karpovich A.Ya., Dabur T. Clinical refraction after scleranguloreconstruction in glaucoma patients. Oftalmologicheskiy zhurnal. 1987; 7:33-35. (In Russ.).

27. Rosen W.J., Mannis M.J., Brandt J.D. The effect of trabeculectomy on corneal topography. Ophthalmic Surg. 1992; 23(6):395-398.

28. Hornova J. [Trabeculectomy with releasable sutures and corneal topography]. Cesk Slov Oftalmol. 1998; 54(6):368-372.

29. Tanito M., Matsuzaki Y., Ikeda Y., Fujihara E. Comparison of surgically induced astigmatism following different glaucoma operations. Clin Ophthalmol. 2017; 11:2113-2120. doi:10.2147/OPTH.S152612

30. Claridge K.G., Galbraith J.K., Karmel V., Bates A.K. The effect of trabeculectomy on refraction, keratometry and corneal topography. Eye (Lond). 1995; 9(Pt 3):292-298. doi:10.1038/eye.1995.57

31. Hayashi K., Hayashi H., Oshika T., Hayashi F. Fourier analysis of irregular astigmatism after trabeculectomy. Ophthalmic Surg Lasers. 2000; 31(2):94-99.

32. Thibos L.N., Horner D. Power vector analysis of the optical outcome of refractive surgery. J Cataract Refract Surg. 2001; 27(1):80-85. doi:10.1016/s0886-3350(00)00797-5

33. Naeser K. Assessment and statistics of surgically induced astigmatism. Acta Ophthalmol. 2008; 86 Suppl. 1:5-28. doi:10.1111/j.1755-3768.2008.01234.x


Review

For citations:


Volzhanin A.V., Petrov S.Yu., Ryzhkova E.G., Safonova D.M., Averich V.V. Morphologic basis of the refraction shift after penetrating glaucoma surgery. National Journal glaucoma. 2020;19(2):3-10. (In Russ.) https://doi.org/10.25700/NJG.2020.02.01

Views: 688


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)