Preview

National Journal glaucoma

Advanced search

Glaucoma without any structural alterations of the optic disc. Is it possible? Part 1

https://doi.org/10.25700/NJG.2020.03.07

Abstract

PURPOSE: To analyze pathological alterations of the parameters of the optic disc as well as peripapillar and macular zones of the retina in preperimetric glaucoma patients.

MATERIALS AND METHODS: 57 patients with preperimetric glaucoma (33 eyes) and control group (24 eyes) were examined. We used HRT and OCT methods and computer software to perform color-coding of all pathological parameters.

RESULTS: Pathologically similar parameters that showed different relations between HRT and OCT results were divided into 3 subgroups: a) with equivalent results according to both methods; b) with the advantage of HRT method; c) with the advantage of OCT method.

CONCLUSIONS: When examining the parameters of OD and attached retina, HRT and OCT methods complemented each other, which allowed a better understanding of the processes occurring in glaucoma.

About the Authors

V. A. Machekhin
The S. Fyodorov Eye Microsurgery Federal State Institution, Tambov branch; Derzhavin Tambov State University
Russian Federation

Med.Sc.D., Professor, Chief scientific consultant

1 Rasskazovskoe highway, Tambov, 392000; 
93 Sovetskaya st., Tambov, 392000



V. A. Lvov
The S. Fyodorov Eye Microsurgery Federal State Institution, Tambov branch; Derzhavin Tambov State University
Russian Federation

Ophthalmologist

1 Rasskazovskoe highway, Tambov, 392000; 
93 Sovetskaya st., Tambov, 392000



References

1. . Rossetti L., Digiuni M., Giovanni M. et al. Blindness and glaucoma: a multicenter data review from 7 Academic Eye Clinics. PLoS ONE. 2015; 10(8):e0136632. doi:10.1371/journal.pone.0136632

2. Tatham A., Medeiros F., Zangwill L., Weinreb R. Strategies to improve early diagnosis in glaucoma. Progress in Brain Research. 2015; 221:103-133. doi: 10.1016/bs.pbr.2015.03.001

3. Mardin C.Y., Horn F.K., Jonas J.B. et al. Preperimetric glaucoma diagnosis by confocal scanning laser tomography of the optic disc. Br J Ophthalmol. 1999; 83(3):299–304. doi:10.1136/bjo.83.3.299

4. Hollo G., Szabo A., Vargha P. Scanning laser polarimetry versus frequency-doubling perimetry and conventional threshold perimetry: Changes during a 12-month follow up in preperimetric glaucoma. A pilot study. Acta Ophthalmol Scand. 2001: 79(4):403–407. doi: 10.1034/j.1600-0420.2001.079004403.x

5. Baraibar B., Sánchez-Cano A., Pablo L.E., Honrubia F.M. Preperimetric glaucoma assessment with scanning laser polarimetry (GDx VCC): analysis of retinal nerve fiber layer by sectors. J Glaucoma. 2007; 16(8):659-664. doi:10.1097/IJG.0b013e318093e5bf

6. Ferreras A., Vicente P., Joseґ M. et al. Can frequency-doubling technology and short wave length automated perimetries detect visual field defects before standard automated perimetry in patients with preperimetric glaucoma. J Glaucoma. 2007; 16(4):372–383. doi:10.1097/IJG.0b013e31803bbb17

7. Burk R., Rohrschneider K, Takamoto T. et al. Laser scanning tomography and stereogrammetry in three dimensional optic disc analysis. Graefes Arch Clin Exp Ophthalmol. 1993; 231(4):193–198. doi: 10.1007/bf00918840

8. Dichtl A., Jonas J.B., Mardin C.Y. Comparison between tomographic scanning evaluation and photographic measurement of the neuroretinal rim. Am J Ophthalmol. 1996; 121(5):494–501. doi:10.1016/s0002-9394(14)75423-6

9. Mikelberg F.S., Parfitt C.M., Swindale N.V. et al. Ability of the Heidelberg retina tomograph to detect early glaucomatous visual field loss. J Glaucoma. 1995; 4(4):242–247. doi: 10.1097/00061198-199508000-00005

10. Schuman J.S., Hee M.R., Puliafito C.A. et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography: a pilot study. Arch Ophthalmol. 1995; 113(5):586–596. doi: 10.1001/archopht.1995.01100050054031

11. Tjon-Fo-Sang M.J., de Vries J., Lemji H.G. Measurement by nerve fiber analyzer of retinal nerve fiber layer thickness in normal subjects and patients with ocular hypertension. Am J Ophthalmol. 1996; 122(2):220–227. doi: 10.1016/s0002-9394(14)72013-6

12. Hollo G., Szabo A., Vargha P. Scanning laser polarimetry versus frequency-doubling perimetry and conventional threshold perimetry: Changes during a 12-month follow up in preperimetric glaucoma. A pilot study. Acta Ophthalmol. Scand. 2001; 79(4):403–407. doi: 10.1034/j.1600-0420.2001.079004403.x

13. Kim H.G., Heo H., Park S.W. Comparison of scanning laser polarimetry and optical coherence tomography in preperimemetric glaucoma. Optom Vis Sci. 2011; 88(1):124-129. doi:10.1097/ijg.0b013e3181b21e87

14. Ferreras A., Pajarin A.B., Pinilla I. et al. Diagnostic ability of glaucoma probability score to discriminate between healthy individuals and glaucoma suspects. Acta Ophthalmol. 2008; 86(9):243. doi:10.1111/ j.1755-3768.2008.507.x

15. Hirashima T., Hangai M., Nukada M. et al. Frequency-doubling technology and retinal measurements with spectral-domain optical coherence tomography in preperimetric glaucoma. Graefes Arch Clin Exp Ophthalmol. 2013; 251(1):129-137. doi:10.1007/s00417-012-2076-7

16. Choi J.A., Lee N.Y., Park C.K. Interpretation of the Humphrey Matrix 24-2 test in the diagnosis of preperimetric glaucoma. Jpn J Ophthalmol. 2009; 53(1):24-30. doi:10.1007/s10384-008-0604-0

17. Asaoka R., Iwase,A., Hirasawa K. et al. Identifying ‘‘Preperimetric’’ Glaucoma in Standard Automated Perimetry Visual Fields. Invest Ophthalmol Vis Sci. 2014; 55:7814–7820. doi:10.1167/iovs.14-15120

18. Sriram P., Klistorner A., Graham S. et al. Optimizing the detection of preperimetric glaucoma by combining structural and functional tests. Invest Ophthalmol Vis Sci. 2015; 56(13):7794–7800. doi:10.1167/ iovs.15-16721

19. Tan O., Chopra V., Lu A.T. et al. Detection of macular ganglion cell loss in glaucoma by fourier-domain optical coherence tomography. Ophthalmology. 2009; 116(12):2305–2314. doi:10.1016/j.ophtha.2009.05.025

20. Lisboa R., Mauro T. Leite M., Zangwill L.M. et al. Diagnosing preperimetric glaucoma with spectral domain optical coherence tomography. Ophthalmology. 2012; 119(11):2261–2269. doi:10.1016/j.ophtha.2012.06.009

21. Na J.H., Lee K., Lee J.R. et al. Detection of macular ganglion cell loss in preperimetric glaucoma patients with localized retinal nerve fiber defects by spectral-domain optical coherence tomography. Clin Exp Ophthalmol. 2013; 41(9):870-880. doi:10.1111/ceo.12142

22. Jeoung J.W., Choi Y.J., Park K.H. et al. Macular Ganglion Cell Imaging Study: glaucoma diagnostic accuracy of spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2013; 54(7):4422–4429. doi:10.1167/iovs.12-11273

23. Angelov B., Petrova K. Optical coherence tomography and its role in the diagnosis of ocular hypertension, preperimetric and perimetric glaucoma. Oftal'mologiya. 2015; 12(1):46–56. (In Russ.). doi:10.18008/1816-5095-2015-1-46-56

24. Kurysheva N.I., Parshunina O.A., Ardzheinishvili T.D. New technologies in primary open-angle glaucoma diagnostics. Glaukoma. 2015; 14(2):21-31. (In Russ.).

25. Seol B.R., Jeoung J.W., Park K.H. Glaucoma detection ability of macular ganglion cell-inner plexiform layer thickness in myopic preperimetric glaucoma. Invest Ophthalmol Vis Sci. 2015; 56(13):8306-8313. doi:10.1167/iovs.15-18141

26. Begum V.U., Addepalli U.K., Yadav R.K. et al. Ganglion cell-inner plexiform layer thickness of high definition optical coherence tomography in perimetric and preperimetric glaucoma. Invest Ophthalmol Vis Sci. 2014; 55(8):4768–4775. doi:10.1167/iovs.14-14598

27. Shin H-Y., Park L. Jung K.I. et al. Comparative study of macular ganglion cell–inner plexiform layer and peripapillary retinal nerve fiber layer measurement: structure–function analysis. Invest Ophthalmol Vis Sci. 2013; 54(12):7344–7353. doi:10.1167/iovs.13-12667

28. Sawada A., Manabe Y., Yamamoto T., Nagata C. Long-term clinical course of normotensive preperimetric glaucoma. Br J Ophthalmol. 2017; 101(12):1649-1653. doi:10.1136/bjophthalmol-2016-309401

29. Kim H.J., Song Y.J., Kim Y.K. et al. Development of visual field defect after first-detected optic disc hemorrhage in preperimetric open-angle glaucoma. J Ophthalmol. 2017; 61(4):307-313. doi:10.1007/s10384-017-0509-x

30. Daga F.B., Gracitelli C.P.B., Diniz-Filho A. et al. Is vision-related quality of life impaired in patients with preperimetric glaucoma? Br J Ophthalmol. 2018; Pii: bjophthalmol-2018-312357. doi:10.1136/bjophthalmol-2018-312357

31. Machekhin V.A., Bondarenko O.A., Savilova E.L. Optimization of the analysis of retinal tomography examination data. Certificate of state registration of a computer program. No. 2008614495, 2008. (In Russ.).

32. Machekhin V.A., Fabrikantov O.L. Color topography of pathological optic disc parameters using laser scanning retinal tomograph HRT III. Bulgarian Forum Glaucoma. Edition of the National Academy Glaucoma Foundation. 2014; 4(1):13-20. (In Russ.).

33. Machekhin V.A. Retinotomograficheskie issledovaniya diska zritel'nogo nerva v norme i pri glaukome [Retinal tomographic examination of optic disc in normal subjects and glaucoma patients]. Moscow: Oftal'mologiya Publ.; 2011. 334 p. (In Russ.).

34. Machekhin V.A. Our experience in evaluation of morphometric parameters of eye nerve disc of glaucoma patients. Vestnik Tambovskogo universiteta. 2013; 18(1):265-272. (In Russ.).

35. Machekhin V.A., Fabrikantov O.L. Heidelberg retinal tomography of the optic disc in the early diagnosis of glaucoma. Vestnik oftal'mologii. 2017; 133(4):17-24. (In Russ.). doi:10.17116/oftalma2017133417-24.

36. Machekhin V.A., Fabrikantov O.L. What is an ophthalmologist obliged to do in case of “suspected glaucoma” diagnosis. Meditsina. 2017; 19(3):108-124. (In Russ.).


Review

For citations:


Machekhin V.A., Lvov V.A. Glaucoma without any structural alterations of the optic disc. Is it possible? Part 1. National Journal glaucoma. 2020;19(3):66-74. (In Russ.) https://doi.org/10.25700/NJG.2020.03.07

Views: 493


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)