Influence of nicotinamide on glaucoma patients
https://doi.org/10.25700/NJG.2020.03.08
Abstract
The literature review dwells on the role of nicotinamide (vitamin B3) in providing neuroprotective and antioxidant protection of the retina in glaucoma optic neuropathy. It presents the data of foreign studies on its positive influence on the condition of retinal ganglion cells and axons of the optic nerve. There is a revival of interest to nicotinamide use in glaucoma in foreign literature of recent years. This is due to its active influence on metabolic processes. As a cofractor of enzymes, it is involved in cell metabolism, tissue respiration, gene expression, redox processes and the repair of deoxyribonucleic acid. Due to direct neuroprotection nicotinamide prevents and slows down the processes that cause apoptosis, such as ischemia, oxidative stress, inflammation, mitochondrial dysfunction, excitotoxicity, impaired axonal transport and loss of neurotrophins. In the central nervous system, vitamin B3 is recognized as a key mediator of the development and survival of neurons. It promotes the differentiation of nerve cells from embryonic stem cells into mature neurons, increases the synaptic plasticity of neurons and promotes the growth of axonal processes. It also shows significant anti-inflammatory, antioxidant and anti-apoptotic effects in various cells and tissues. Nicotinamide counteracts amyloid toxicity and the formation of reactive oxygen species, and its bioavailability plays a crucial role in normal functioning of neurons and in the prevention of neurodegeneration processes.
Particular attention is paid to the antioxidant and neuroprotective role of niacin, as well as its deficiency in neurodegenerative diseases, and other neuropathological conditions. Plasma nicotinamide deficiency was also detected in glaucoma. This allowes suggesting that nicotinamide supplements could be the future therapeutic strategy for glaucoma (as an adjunctive to antihypertensive therapy). It was found that oral administration of niacin has a pronounced neuroprotective effect, protects retinal ganglion cells in chronic ocular hypertension. Niacin consumption correlats with an improvement of vascular endothelium and an oxidative stress reduction. Thus, nicotinamide can be a valuable addition to the antihypertensive therapy of glaucoma and other neurodegenerative diseases, as well as conditions associated with aging.
About the Authors
A. V. KorneevaRussian Federation
Ophthalmologist
3 Borisa Galushkina st., Moscow129301
A. V. Kuroyedov
Russian Federation
Med.Sc.D., Professor, Head of Department
8а Bol’shaya Olen’ya st., Moscow, 107014;
1 Ostrovitianov st., Moscow, 117997
I. R. Gazizova
Russian Federation
Med.Sc.D., Head of Ophthalmology Department, Laboratory of the Molecular Biology of Stem Cells
12 Akademika Pavlova st., Saint-Petersburg, 197376
A. Yu. Brezhnev
Russian Federation
Ph.D., associate Professor of Opthalmology Department
3 K. Marksa st., Kursk, 305041
Dzh. N. Lovpache
Russian Federation
Ph.D., Ophthalmologist, Glaucoma Expert
3 Borisa Galushkina st., Moscow129301
I. A. Loskoutov
Russian Federation
Med.Sc.D., Head of Ophthalmology Department
84 Volokolamsk highway, Moscow, 123567.
References
1. Quigley H.A., Broman A.T. The number of people with glaucoma worldwi de in 2010 and 2020. Br J Ophthalmol. 2006; 90:262–267. doi:10.1136/bjo.2005.081224
2. Resnikoff S., Pascolini D., Etya’Ale D. et al. Global data on visual impairment in the year 2002. Bull. World Health Org. 2004; 82:844–851. doi:/S0042-96862004001100009
3. Weinreb R.N., Aung T., Medeiros F.A. The Pathophysiology and treatment of glaucoma. JAMA. 2014; 311(18):1901-1911. doi: 10.1001/jama.2014.3192
4. Heijl A., Bengtsson B., Chauhan B.C., Lieberman M.F. et al. A comparison of visual field progression criteria of 3 major glaucoma trials in early manifest glaucoma trial patients. Ophthalmol. 2008; 115:1557–1565. doi:10.1016/j.ophtha.2008.02.005
5. Bagnis A., Papadia M., Scotto R., Traverso C.E. Current and emerging medical therapies in the treatment of glaucoma. Expert Opin Emerg Drugs. 2011; 16(2):293–307. doi:10.1517/14728214.2011.563733
6. Chauhan B.C., Mikelberg F.S., Balaszi A.G., LeBlanc R.P. et al. Canadian Glaucoma Study Group; Canadian Glaucoma Study: 2. Risk factors for the progression of open-angle glaucoma. Arch Ophthalmol. 2008; 126:1030–1036. doi:10.1001/archopht.126.8.1030
7. AGIS Investigators. The Advanced Glaucoma Intervention Study (AGIS): 12. Baseline risk factors for sustained loss of visual field and visual acuity in patients with advanced glaucoma. Am J Ophthalmol. 2002; 134(4):499-512. doi:10.1016/s0002-9394(02)01659-8
8. Soto I., Howell G.R. The complex role of neuroinflammation in glaucoma. Cold Spring Harb Perspect Med. 2014; 3;4(8). pii: a017269. doi: 10.1101/cshperspect.a017269
9. Križaj D., Ryskamp D.A., Tian N. et al. From mechanosensitivity to inflammatory responses: new players in the pathology of glaucoma. Curr Eye Res. 2014; 39:105–119. doi:10.3109/02713683.2013.836541
10. Izzotti A., Sacca` S.C., Cartiglia C., De Flora S. Oxidative deoxyribonucleic acid damage in the eyes of glaucoma patients. Am J Med. 2003; 114(8):638-646. doi: 10.1016/s0002-9343(03)00114-1
11. Sacca` S.C., Pascotto A., Camicione P. et al. Oxidative DNA damage in the human trabecular meshwork: clinical correlation in patients with primary open-angle glaucoma. Arch Ophthalmol. 2005; 123(4):458-463. doi:10.1001/archopht.123.4.458
12. Ganapathy P.S., White R.E., Ha Y. et al. The role of N-methyl-Daspartate receptor activation in homocysteine-induced death of retinal ganglion cells. Invest Ophthalmol Vis Sci. 2011; 52(8):5515-5524. doi: 10.1167/iovs.10-6870
13. Engin K.N. Alpha-tocopherol: Looking beyond an antioxidant. Mol Vis. 2009; 15: 855–860.
14. Himori N., Kunikata H., Shiga Y. et al. The association between systemic oxidative stress and ocular blood flow in patients with normaltension glaucoma. Graefes Arch Clin Exp Ophthalmol. 2016; 254:333–341. doi:10.1007/s00417-015-3203-z
15. Stringham J.M., Snodderly D.M. Enhancing performance while avoiding damage: a contribution of macular pigment. Invest Opthalmol Vis Sci. 2013; 54(9):6298. doi:10.1167/iovs.13-12365
16. Chang E.E., Goldberg J.L. Glaucoma 2.0: Neuroprotection, neuroregeneration, neuroenhancement. Ophthalmology. 2012; 119(5):979-986. doi: 10.1016/j.ophtha.2011.11.003
17. Morrone L.A., Rombola L., Adornetto A. et al. Rational basis for nutraceuticals in the treatment of glaucoma. Curr Neuropharmacol. 2017; 16(7):1004-1017. doi:10.2174/1570159X15666171109124520
18. Jung K.I., Kim Y.C., Park C.K. Dietary niacin and open-angle glaucoma: the korean national health and nutrition examination survey. Nutrients. 2018; 10(4). pii: E387. doi:10.3390/nu10040387
19. Williams P.A., Harder J.M., Foxworth N.E. et al. Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science. 2017; 355:756–760. doi:10.1126/science.aal0092
20. Gasperi V., Sibilano M., Savini I. et al. Niacin in the central nervous system: an update of biological aspects and clinical applications. Int J Mol Sci. 2019; 20(4). pii: E974. doi:10.3390/ijms20040974
21. Nzoughet J.K., Barca J.M., Guehlouz K. et al. Nicotinamide deficiency in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2019; 60(7):2509-2514. doi: 10.1167/iovs.19-27099
22. Nzoughet J.K., Guehlouz K., Leruez S. et al. A Data Mining Metabolomics Exploration of Glaucoma. Metabolites. 2020; 10(2). pii: E49. doi:10.3390/metabo10020049
23. Maiese K., Chong Z.Z., Hou J. et al. The vitamin nicotinamide: translating nutrition into clinical care. Molecules. 2009; 14:3446-85. doi:10.3390/molecules14093446
24. McKenney J. New perspectives on the use of niacin in the treatment of lipid disorders. Arch Intern Med. 2004; 164(7):697-705. doi:10.1001/archinte.164.7.697
25. Cui X., Chopp M., Zacharek A. et al. Niacin treatment of stroke increases synaptic plasticity and axon growth in rats. Stroke. 2010; 41:2044–2049. doi:10.1161/STROKEAHA.110.589333
26. Graff E.C., Fang H., Wanders D. et al. Anti-inflammatory effects of the hydroxycarboxylic acid receptor 2. Metabolism. 2016; 65:102–113. doi:10.1016/j.metabol.2015.10.001
27. Kerr J.S., Adriaanse B.A., Greig N.H. et al. Mitophagy and Alzheimer’s Disease: cellular and molecular mechanisms. Trends Neurosci. 2017; 40:151–166. doi:10.1016/j.tins.2017.01.002
28. Wang Y., Grenell A., Zhong F. et al. Metabolic signature of the aging eye in mice. Neurobiol Aging. 2018; 71:223-233. doi:10.1016/j.neurobiolaging.2018.07.024
29. Zhang M., Ying W. NAD+ Deficiency is a common central pathological factor of a number of diseases and aging: mechanisms and therapeutic implications. Antioxid Redox Signal. 2019; 30(6):890-905. doi: 10.1089/ars.2017.7445
30. Earnest C.P., Wood K.A., Church T.S. Complex multivitamin supplementation improves homocysteine and resistance to LDL-C oxidation. J Am Coll Nutr. 2003; 22(5):400–407. doi: 10.1080/07315724.2003.10719323
31. Hikosaka K., Yaku K., Okabe K. et al. Implications of NAD metabolism in pathophysiology and therapeutics for neurodegenerative diseases. Nutr Neurosci. 2019; 1-13. doi: 10.1080/1028415X.2019.1637504
32. Griffin S.M., Pickard M.R., Orme R.P. et al. Nicotinamide alone accelerates the conversion of mouse embryonic stem cells into mature neuronal populations. PLoS ONE. 2017; 12(8):e0183358. doi. org/10.1371/journal.pone.0183358
33. Flammer J. The vascular concept of glaucoma. Surv Ophthalmol. 1994; 38:S3-S6.
34. Drance S., Anderson D.R., Schulzer M. Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol. 2001; 131:699–708. doi:10.1016/s0002-9394(01)00964-3
35. Buckley C., Hadoke P.W., Henry E. et al. Systemic vascular endothelial cell dysfunction in normal pressure glaucoma. Br J Ophthalmol. 2002; 86:227–232. doi:10.1136/bjo.86.2.227
36. Kaplon R.E., Gano L.B., Seals D.R. Vascular endothelial function and oxidative stress are related to dietary niacin intake among healthy middle-aged and older adults. J Appl Physiol. 2014; 116:156–163. doi:10.1152/japplphysiol.00969.2013
37. Sadun A.A. Metabolic optic neuropathies. Semin Ophthalmol. 2002; 17:29-32. doi:10.1076/soph.17.1.29.10290
38. de Silva P., Jayamanne G., Bolton R. Folic acid deficiency optic neuropathy: a case report. J Med Case Rep. 2008; 2:299. doi:10.1186/1752-1947-2-299
39. Santandrea E., Sani I., Morbioli G. et al. Optic nerve degeneration and reduced contrast sensitivity due to folic acid deficiency: a behavioral and electrophysiological study in Rhesus monkeys. Invest Ophthalmol Vis Sci. 2018; 59(15):6045-6056. doi:10.1167/iovs.18-24822
40. Fenech M. Folate (vitamin B9) and vitamin B12 and their function inthe maintenance of nuclear and mitochondrial genome integrity. Mutat Res. 2012; 733:21–33. doi:10.1016/j.mrfmmm.2011.11.003
41. Chan W., Almasieh M., Catrinescu M.M. et al. Cobalamin-associated superoxide scavenging in neuronal cells is a potential mechanism for vitamin B12-deprivation optic neuropathy. Am J Pathol. 2018; 188(1):160-172. doi:10.1016/j.ajpath.2017.08.032
42. Anand O.P., Choudhary S.K., Gupta S. Vitamin B12 deficiency induced optic neuropathy. Delhi J Ophthalmol. 2019; 29;125-126. doi:10.7869/djo.467
43. Wan M.J., Daniel S., Kassam F. et al. Survey of complementary and alternative medicine use in glaucoma patients. J Glaucoma. 2010; 21(2):1. doi:10.1097/IJG.0b013e3182027c0c
44. Turusheva A.V., Moiseeva I.E. Malnutrition in the elderly and old age. Russian Family Doctor. 2018; 23(1):5-15. (In Russ.). doi:10.17816/RFD201915-15
45. Iwakawa H., Nakamura Y., Fukui T., Fukuwatari T. et al. Concentrations of water-soluble vitamins in blood and urinary excretion in patients with diabetes mellitus. Nutrition and Metabolic Insights. 2016; 9:85–92. doi:10.4137/NMI.S40595
Review
For citations:
Korneeva A.V., Kuroyedov A.V., Gazizova I.R., Brezhnev A.Yu., Lovpache D.N., Loskoutov I.A. Influence of nicotinamide on glaucoma patients. National Journal glaucoma. 2020;19(3):75-81. (In Russ.) https://doi.org/10.25700/NJG.2020.03.08