Preview

National Journal glaucoma

Advanced search

Influence of nicotinamide on glaucoma patients

https://doi.org/10.25700/NJG.2020.03.08

Abstract

The literature review dwells on the role of nicotinamide (vitamin B3) in providing neuroprotective and antioxidant protection of the retina in glaucoma optic neuropathy. It presents the data of foreign studies on its positive influence on the condition of retinal ganglion cells and axons of the optic nerve. There is a revival of interest to nicotinamide use in glaucoma in foreign literature of recent years. This is due to its active influence on metabolic processes. As a cofractor of enzymes, it is involved in cell metabolism, tissue respiration, gene expression, redox processes and the repair of deoxyribonucleic acid. Due to direct neuroprotection nicotinamide prevents and slows down the processes that cause apoptosis, such as ischemia, oxidative stress, inflammation, mitochondrial dysfunction, excitotoxicity, impaired axonal transport and loss of neurotrophins. In the central nervous system, vitamin B3 is recognized as a key mediator of the development and survival of neurons. It promotes the differentiation of nerve cells from embryonic stem cells into mature neurons, increases the synaptic plasticity of neurons and promotes the growth of axonal processes. It also shows significant anti-inflammatory, antioxidant and anti-apoptotic effects in various cells and tissues. Nicotinamide counteracts amyloid toxicity and the formation of reactive oxygen species, and its bioavailability plays a crucial role in normal functioning of neurons and in the prevention of neurodegeneration processes.

Particular attention is paid to the antioxidant and neuroprotective role of niacin, as well as its deficiency in neurodegenerative diseases, and other neuropathological conditions. Plasma nicotinamide deficiency was also detected in glaucoma. This allowes suggesting that nicotinamide supplements could be the future therapeutic strategy for glaucoma (as an adjunctive to antihypertensive therapy). It was found that oral administration of niacin has a pronounced neuroprotective effect, protects retinal ganglion cells in chronic ocular hypertension. Niacin consumption correlats with an improvement of vascular endothelium and an oxidative stress reduction. Thus, nicotinamide can be a valuable addition to the antihypertensive therapy of glaucoma and other neurodegenerative diseases, as well as conditions associated with aging.

About the Authors

A. V. Korneeva
”Three-Z Clinic”
Russian Federation

Ophthalmologist

3 Borisa Galushkina st., Moscow129301



A. V. Kuroyedov
Mandryka Central Clinical Hospital; Pirogov Russian National Research Medical University
Russian Federation

Med.Sc.D., Professor, Head of Department

8а Bolshaya Olen’ya st., Moscow, 107014; 
1 Ostrovitianov st., Moscow, 117997 

 


I. R. Gazizova
Institute of Cytology, Russian Academy of Sciences
Russian Federation

Med.Sc.D., Head of Ophthalmology Department, Laboratory of the Molecular Biology of Stem Cells

12 Akademika Pavlova st., Saint-Petersburg, 197376



A. Yu. Brezhnev
State Medical University
Russian Federation

Ph.D., associate Professor of Opthalmology Department

3 K. Marksa st., Kursk, 305041



Dzh. N. Lovpache
”Three-Z Clinic”
Russian Federation

Ph.D., Ophthalmologist, Glaucoma Expert

3 Borisa Galushkina st., Moscow129301



I. A. Loskoutov
Science clinical center Russian railways
Russian Federation

Med.Sc.D., Head of Ophthalmology Department

84 Volokolamsk highway, Moscow, 123567.



References

1. Quigley H.A., Broman A.T. The number of people with glaucoma worldwi de in 2010 and 2020. Br J Ophthalmol. 2006; 90:262–267. doi:10.1136/bjo.2005.081224

2. Resnikoff S., Pascolini D., Etya’Ale D. et al. Global data on visual impairment in the year 2002. Bull. World Health Org. 2004; 82:844–851. doi:/S0042-96862004001100009

3. Weinreb R.N., Aung T., Medeiros F.A. The Pathophysiology and treatment of glaucoma. JAMA. 2014; 311(18):1901-1911. doi: 10.1001/jama.2014.3192

4. Heijl A., Bengtsson B., Chauhan B.C., Lieberman M.F. et al. A comparison of visual field progression criteria of 3 major glaucoma trials in early manifest glaucoma trial patients. Ophthalmol. 2008; 115:1557–1565. doi:10.1016/j.ophtha.2008.02.005

5. Bagnis A., Papadia M., Scotto R., Traverso C.E. Current and emerging medical therapies in the treatment of glaucoma. Expert Opin Emerg Drugs. 2011; 16(2):293–307. doi:10.1517/14728214.2011.563733

6. Chauhan B.C., Mikelberg F.S., Balaszi A.G., LeBlanc R.P. et al. Canadian Glaucoma Study Group; Canadian Glaucoma Study: 2. Risk factors for the progression of open-angle glaucoma. Arch Ophthalmol. 2008; 126:1030–1036. doi:10.1001/archopht.126.8.1030

7. AGIS Investigators. The Advanced Glaucoma Intervention Study (AGIS): 12. Baseline risk factors for sustained loss of visual field and visual acuity in patients with advanced glaucoma. Am J Ophthalmol. 2002; 134(4):499-512. doi:10.1016/s0002-9394(02)01659-8

8. Soto I., Howell G.R. The complex role of neuroinflammation in glaucoma. Cold Spring Harb Perspect Med. 2014; 3;4(8). pii: a017269. doi: 10.1101/cshperspect.a017269

9. Križaj D., Ryskamp D.A., Tian N. et al. From mechanosensitivity to inflammatory responses: new players in the pathology of glaucoma. Curr Eye Res. 2014; 39:105–119. doi:10.3109/02713683.2013.836541

10. Izzotti A., Sacca` S.C., Cartiglia C., De Flora S. Oxidative deoxyribonucleic acid damage in the eyes of glaucoma patients. Am J Med. 2003; 114(8):638-646. doi: 10.1016/s0002-9343(03)00114-1

11. Sacca` S.C., Pascotto A., Camicione P. et al. Oxidative DNA damage in the human trabecular meshwork: clinical correlation in patients with primary open-angle glaucoma. Arch Ophthalmol. 2005; 123(4):458-463. doi:10.1001/archopht.123.4.458

12. Ganapathy P.S., White R.E., Ha Y. et al. The role of N-methyl-Daspartate receptor activation in homocysteine-induced death of retinal ganglion cells. Invest Ophthalmol Vis Sci. 2011; 52(8):5515-5524. doi: 10.1167/iovs.10-6870

13. Engin K.N. Alpha-tocopherol: Looking beyond an antioxidant. Mol Vis. 2009; 15: 855–860.

14. Himori N., Kunikata H., Shiga Y. et al. The association between systemic oxidative stress and ocular blood flow in patients with normaltension glaucoma. Graefes Arch Clin Exp Ophthalmol. 2016; 254:333–341. doi:10.1007/s00417-015-3203-z

15. Stringham J.M., Snodderly D.M. Enhancing performance while avoiding damage: a contribution of macular pigment. Invest Opthalmol Vis Sci. 2013; 54(9):6298. doi:10.1167/iovs.13-12365

16. Chang E.E., Goldberg J.L. Glaucoma 2.0: Neuroprotection, neuroregeneration, neuroenhancement. Ophthalmology. 2012; 119(5):979-986. doi: 10.1016/j.ophtha.2011.11.003

17. Morrone L.A., Rombola L., Adornetto A. et al. Rational basis for nutraceuticals in the treatment of glaucoma. Curr Neuropharmacol. 2017; 16(7):1004-1017. doi:10.2174/1570159X15666171109124520

18. Jung K.I., Kim Y.C., Park C.K. Dietary niacin and open-angle glaucoma: the korean national health and nutrition examination survey. Nutrients. 2018; 10(4). pii: E387. doi:10.3390/nu10040387

19. Williams P.A., Harder J.M., Foxworth N.E. et al. Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science. 2017; 355:756–760. doi:10.1126/science.aal0092

20. Gasperi V., Sibilano M., Savini I. et al. Niacin in the central nervous system: an update of biological aspects and clinical applications. Int J Mol Sci. 2019; 20(4). pii: E974. doi:10.3390/ijms20040974

21. Nzoughet J.K., Barca J.M., Guehlouz K. et al. Nicotinamide deficiency in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2019; 60(7):2509-2514. doi: 10.1167/iovs.19-27099

22. Nzoughet J.K., Guehlouz K., Leruez S. et al. A Data Mining Metabolomics Exploration of Glaucoma. Metabolites. 2020; 10(2). pii: E49. doi:10.3390/metabo10020049

23. Maiese K., Chong Z.Z., Hou J. et al. The vitamin nicotinamide: translating nutrition into clinical care. Molecules. 2009; 14:3446-85. doi:10.3390/molecules14093446

24. McKenney J. New perspectives on the use of niacin in the treatment of lipid disorders. Arch Intern Med. 2004; 164(7):697-705. doi:10.1001/archinte.164.7.697

25. Cui X., Chopp M., Zacharek A. et al. Niacin treatment of stroke increases synaptic plasticity and axon growth in rats. Stroke. 2010; 41:2044–2049. doi:10.1161/STROKEAHA.110.589333

26. Graff E.C., Fang H., Wanders D. et al. Anti-inflammatory effects of the hydroxycarboxylic acid receptor 2. Metabolism. 2016; 65:102–113. doi:10.1016/j.metabol.2015.10.001

27. Kerr J.S., Adriaanse B.A., Greig N.H. et al. Mitophagy and Alzheimer’s Disease: cellular and molecular mechanisms. Trends Neurosci. 2017; 40:151–166. doi:10.1016/j.tins.2017.01.002

28. Wang Y., Grenell A., Zhong F. et al. Metabolic signature of the aging eye in mice. Neurobiol Aging. 2018; 71:223-233. doi:10.1016/j.neurobiolaging.2018.07.024

29. Zhang M., Ying W. NAD+ Deficiency is a common central pathological factor of a number of diseases and aging: mechanisms and therapeutic implications. Antioxid Redox Signal. 2019; 30(6):890-905. doi: 10.1089/ars.2017.7445

30. Earnest C.P., Wood K.A., Church T.S. Complex multivitamin supplementation improves homocysteine and resistance to LDL-C oxidation. J Am Coll Nutr. 2003; 22(5):400–407. doi: 10.1080/07315724.2003.10719323

31. Hikosaka K., Yaku K., Okabe K. et al. Implications of NAD metabolism in pathophysiology and therapeutics for neurodegenerative diseases. Nutr Neurosci. 2019; 1-13. doi: 10.1080/1028415X.2019.1637504

32. Griffin S.M., Pickard M.R., Orme R.P. et al. Nicotinamide alone accelerates the conversion of mouse embryonic stem cells into mature neuronal populations. PLoS ONE. 2017; 12(8):e0183358. doi. org/10.1371/journal.pone.0183358

33. Flammer J. The vascular concept of glaucoma. Surv Ophthalmol. 1994; 38:S3-S6.

34. Drance S., Anderson D.R., Schulzer M. Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol. 2001; 131:699–708. doi:10.1016/s0002-9394(01)00964-3

35. Buckley C., Hadoke P.W., Henry E. et al. Systemic vascular endothelial cell dysfunction in normal pressure glaucoma. Br J Ophthalmol. 2002; 86:227–232. doi:10.1136/bjo.86.2.227

36. Kaplon R.E., Gano L.B., Seals D.R. Vascular endothelial function and oxidative stress are related to dietary niacin intake among healthy middle-aged and older adults. J Appl Physiol. 2014; 116:156–163. doi:10.1152/japplphysiol.00969.2013

37. Sadun A.A. Metabolic optic neuropathies. Semin Ophthalmol. 2002; 17:29-32. doi:10.1076/soph.17.1.29.10290

38. de Silva P., Jayamanne G., Bolton R. Folic acid deficiency optic neuropathy: a case report. J Med Case Rep. 2008; 2:299. doi:10.1186/1752-1947-2-299

39. Santandrea E., Sani I., Morbioli G. et al. Optic nerve degeneration and reduced contrast sensitivity due to folic acid deficiency: a behavioral and electrophysiological study in Rhesus monkeys. Invest Ophthalmol Vis Sci. 2018; 59(15):6045-6056. doi:10.1167/iovs.18-24822

40. Fenech M. Folate (vitamin B9) and vitamin B12 and their function inthe maintenance of nuclear and mitochondrial genome integrity. Mutat Res. 2012; 733:21–33. doi:10.1016/j.mrfmmm.2011.11.003

41. Chan W., Almasieh M., Catrinescu M.M. et al. Cobalamin-associated superoxide scavenging in neuronal cells is a potential mechanism for vitamin B12-deprivation optic neuropathy. Am J Pathol. 2018; 188(1):160-172. doi:10.1016/j.ajpath.2017.08.032

42. Anand O.P., Choudhary S.K., Gupta S. Vitamin B12 deficiency induced optic neuropathy. Delhi J Ophthalmol. 2019; 29;125-126. doi:10.7869/djo.467

43. Wan M.J., Daniel S., Kassam F. et al. Survey of complementary and alternative medicine use in glaucoma patients. J Glaucoma. 2010; 21(2):1. doi:10.1097/IJG.0b013e3182027c0c

44. Turusheva A.V., Moiseeva I.E. Malnutrition in the elderly and old age. Russian Family Doctor. 2018; 23(1):5-15. (In Russ.). doi:10.17816/RFD201915-15

45. Iwakawa H., Nakamura Y., Fukui T., Fukuwatari T. et al. Concentrations of water-soluble vitamins in blood and urinary excretion in patients with diabetes mellitus. Nutrition and Metabolic Insights. 2016; 9:85–92. doi:10.4137/NMI.S40595


Review

For citations:


Korneeva A.V., Kuroyedov A.V., Gazizova I.R., Brezhnev A.Yu., Lovpache D.N., Loskoutov I.A. Influence of nicotinamide on glaucoma patients. National Journal glaucoma. 2020;19(3):75-81. (In Russ.) https://doi.org/10.25700/NJG.2020.03.08

Views: 2227


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)