Ocular surface changes after filtration surgery
https://doi.org/10.25700/NJG.2020.03.10
Abstract
This review summarizes the results of studies dedicated to analyzing the ocular surface condition and the patients’ quality of life after filtration surgery (mainly sinus trabeculectomy). Intraocular pressure is the only modifiable factor in the treatment of primary open-angle glaucoma (POAG). Usually POAG treatment starts with antihypertensive eye drops, the components and active substances of which can affect the ocular surface, and lead to iatrogenic dry eye syndrome (DES). The symptoms of DES impair the quality of life of glaucoma patients and reduce adherence to treatment. It is worth noting that advanced stages of the disease require surgical treatment, which also effects the ocular surface.
About the Authors
Z. M. NagornovaRussian Federation
Assistant Professor
8 Sheremetevskiy av., Ivanovo, 153012
A. V. Seleznev
Russian Federation
Ph.D., Associate Professor
8 Sheremetevskiy av., Ivanovo, 153012
A. V. Kuroyedov
Russian Federation
Med.Sc.D., Head of Ophthalmology Department, Professor
8а Bol’shaya Olen’ya st., Moscow, 107014;
1 Ostrovitianov st., Moscow, 117997
I. R. Gazizova
Russian Federation
Med.Sc.D., Head of Ophthalmology Department
12 Academy Pavlov st., Saint-Petersburg, 197376
E. A. Borisova
Russian Federation
Head of Ophthalmology Department
1 Lubimova st., Ivanovo, 153000
References
1. Avdeev R.V., Alexandrov A.S., Bakunina N.A. et al. A model of primary openangle glaucoma: manifestations and outcomes. Klinicheskaya мeditsina. 2014; 92(12):64-72. (In Russ.).
2. Gazizova I., Avdeev R., Aleksandrov A. et al. Multicenter study of intraocular pressure level in patients mith moderate and advanced primary open-angle glaucoma on treatment. Invest Ophthalmol Vis Sci. 2016; 57(12): 6470. doi:10.17816/OV2015143-60
3. Mastropasqua L., Agnifili L., Mastropasqua R., Fasanella V. Conjunctival modifications induced by medical and surgical therapies in patients with glaucoma. Curr Opin Pharmacol. 2013; 13(1):56-64. doi:10.1016/j.coph.2012.10.002
4. Petrov S.Y., Volzhanin A.V. Trabeculectomy: history, terminology, technique. National Journal glaucoma. 2017; 16(2):82-91. (In Russ.).
5. Agnifili L., Brescia L., Oddone F. et al. The ocular surface after successful glaucoma filtration surgery: a clinical, in vivo confocal microscopy, and immunecytology study. Sci Rep. 2019; 9(1): 11299. doi:10.1038/s41598-019-47823-z
6. Ihan A., Cvenkel B. Conjunctival epithelium expression of HLA-DR in glaucoma patients and its inf luence on the outcome of filtration surgery. Br J Ophthalmol. 2000; 84(6):648-650. doi:10.1136/bjo.84.6.648
7. Cvenkel B., Kopitar A.N., Ihan A. Correlation between filtering bleb morphology, expression of inflammatory marker HLA-DR by ocular surface, and outcome of trabeculectomy. J Glaucoma. 2013; 22(1):15-20. doi:10.1097/ijg.0b013e3182254051
8. Giannaccare G., Pellegrini M., Sebastiani S. et al. In vivo confocal microscopy morphometric analysis of corneal subbasal nerve plexus in dry eye disease using newly developed fully automated system. Graefes Arch Clin Exp Ophthalmol. 2019; 257(3):583-589. doi:10.1007/s00417-018-04225-7
9. Gipson I.K. Goblet cells of the conjunctiva: A review of recent findings. Prog Retin Eye Res. 2016; 54:49-63. doi:10.1016/j.preteyeres.2016.04.005
10. Amar N., Labbé A., Hamard P. et al. Filtering blebs and aqueous pathway an immunocytological and in vivo confocal microscopy study. Ophthalmology. 2008; 115(7): 1154-1161. doi:10.1016/j.ophtha.2007.10.024
11. Agnifili L., Fasanella V. In vivo goblet cell density as a potential indicator of glaucoma filtration surgery outcome. Invest Ophthalmol Vis Sci. 2016; 57(7):2928-2935. doi:10.1167/iovs.16-20662
12. Mastropasqua R., Fasanella V., Brescia L. et al. In vivo confocal imaging of the conjunctiva as a predictive tool for the glaucoma filtration surgery outcome. Invest Ophthalmol Vis Sci. 2017; 58(6):114-120. doi:10.1167/iovs.17-21795
13. Sacu S., Rainer G., Findl O. et al. Correlation between the early morphological appearance of filtering blebs and outcome of trabeculectomy with mitomycin C. J Glaucoma. 2003; 12(5):430-435. doi:10.1097/00061198-200310000-00006
14. Shields M.B., Scroggs M.W., Sloop C.M., Simmons R.B. Clinical and histopathologic observations concerning hypotony after trabeculectomy with adjunctive mitomycin C. Am J Ophthalmol. 1993; 116(6):673-683.
15. Liang S.Y., Lee G.A., Whitehead K. Histopathology of a functioning mitomycin-C trabeculectomy. Clin Exp Ophthalmol. 2009; 37(3):316-319. doi:10.1111/j.1442-9071.2009.02023.x
16. Amar N., Labbe A., Hamard P. et al. Filtering blebs and aqueous pathway an immunocytological and in vivo confocal microscopy study. Ophthalmology. 2008; 115(7):1154-1161. doi:10.1016/j.ophtha.2007.10.024
17. Baudouin C. Ocular surface and external filtration surgery: mutual relationships. Dev Ophthalmol. 2012; 50:64-78. doi:10.1159/000334791
18. Shields M.B., Scroggs M.W., Sloop C.M., Simmons R.B. Clinical and histopathologic observations concerning hypotony after trabeculectomy with adjunctive mitomycin C. Am J Ophthalmol. 1993; 116(6):673-683. doi:10.1016/s0002-9394(14)73465-8
19. Gipson I.K. Distribution of mucins at the ocular surface. Exp Eye Res. 2004; 78(3):379-388. doi:10.1016/s0014-4835(03)00204-5
20. Argueso P., Gipson I.K. Epithelial mucins of the ocular surface: structure, biosynthesis and function. Exp Eye Res. 2001; 73(3):281-289. doi:10.1006/exer.2001.1045
21. Muniesa M.J., González S., Buetas P. et al. Evaluation of conjunctival epithelium of filtering blebs by impression cytology. Arch Soc Esp Ophthalmol. 2014; 89(6):216-221. doi:10.1016/j.oftal.2013.07.004
22. Kim J.W. Conjunctival impression cytology of the filtering bleb. Kor J Ophthalmol. 1997; 11(1):25-31. doi:10.3341/kjo.1997.11.1.25
23. Ji H., Zhu Y., Zhang Y. et al. Dry eye disease in patients with functioning filtering blebs after trabeculectomy. PLoS One. 2016; 11(3): e0152696. doi:10.1371/journal.pone.0152696
24. Neves Mendes C.R., Hida R.Y., Kasahara N. Ocular surface changes in eyes with glaucoma filtering blebs. Curr Eye Res. 2012; 37(4):309-311. doi:10.3109/02713683.2011.635400
25. Klink T., Schrey S., Elsesser U. et al. Interobserver variability of the Wurzburg bleb classification score. Ophthalmology. 2008; 222(6):408-413. doi:10.1159/000161555
26. Agnifili L., Fasanella V., Costagliola C. et al. In vivo confocal microscopy of meibomian glands in glaucoma. Br J Ophthalmol. 2013; 97(3):343-349. doi:10.1136/bjophthalmol-2012-302597
27. Mastropasqua R., Agnifili L., Fasanella V. et al. Corneoscleral limbus in glaucoma patients: In vivo confocal microscopy and immunocytological study. Invest Ophthalmol Vis Sci. 2015; 56(3):2050-2058. doi:10.1167/iovs.14-15890
28. Mastropasqua R, Agnifili L, Fasanella V. et al. In vivo distribution of corneal epithelial dendritic cells in patients with glaucoma. Invest Ophthalmol Vis Sci. 2016; 57(14):5996-6002. doi:10.1167/iovs.16-20333
29. Tailor R., Batra R., Mohamed S. A National survey of glaucoma specialists on the preoperative (trabeculectomy) management of the ocular surface. Semin Ophthalmol. 2016; 31(6):519-525. doi:10.3109/08820538.2014.986585
30. Giannaccare G., Pellegrini M., Sebastiani S. et al. In vivo confocal microscopy morphometric analysis of corneal subbasal nerve plexus in dry eye disease using newly developed fully automated system. Graefes Arch Clin Exp Ophthalmol. 2019; 257(3):583-589. doi:10.1007/s00417-018-04225-7
31. Simsek C., Kojima T., Dogru M., Tsubota K. Alterations of murine subbasal corneal nerves after environmental dry eye stress. Invest Ophthalmol Vis Sci. 2018; 59(5): 1986-1995. doi:10.1167/iovs.17-23743
32. Bikbov M.M., Babushkin A.E., Orenburkina O.I. Current opportunities for the prevention of excessive scarring after glaucoma surgery using antimetabolites. National Journal glaucoma. 2019; 18(3):55-60. (In Russ.). doi:10.25700/NJG.2019.03.06
33. Zahidov A.B., Seleznev A.V., Gazizova I.R., Kuroyedov A.V. et al. Intraoperative use of antimetabolites in glaucoma surgery. National Journal glaucoma. 2020; 19(1):40-45. (In Russ.). doi:10.25700/NJG.2020.01.06
34. Wilkins M., Indar A., Wormald R. Intraoperative mitomycin C for glaucoma surgery. Cochrane Database Syst Rev. 2005;(4): CD002897. doi:10.1002/14651858.cd002897
35. Sagara H., Sekiryu T., Noji H. et al. Jpn J Ophthalmol. 2014; 58(4):334-341. doi:10.1007/s10384-014-0324-6
36. Morales A.J., Zadok D., Mora-Retana R. et al. Intraoperative mitomycin and corneal endothelium after photorefractive keratectomy. Am J Ophthalmol. 2006; 142(3):400-404. doi:10.1016/j.ajo.2006.04.029
37. Lichtinger A., Pe’er J., Frucht-Pery J., Solomon A. Limbal stem cell deficiency after topical mitomycin C therapy for primary acquired melanosis with atypia. Ophthalmology. 2010; 117(3): 431-437. doi:10.1016/j.ophtha.2009.07.032
38. Lam J., Wong T., Tong L. Ocular surface disease in posttrabeculectomy/ mitomycin C patients. Clin Ophthalmol. 2015; 9:187-191. doi:10.2147/OPTH.S70721
39. Morales A.J., Zadok D., Mora-Retana R. et al. Intraoperative mitomycin and corneal endothelium after photorefractive keratectomy. Am J Ophthalmol. 2006; 142(3):400-404. doi:10.1016/j.ajo.2006.04.029
40. Lichtinger A., Pe’er J., Frucht-Pery J., Solomon A. Limbal stem cell deficiency after topical mitomycin C therapy for primary acquired melanosis with atypia. Ophthalmology. 2010; 117(3):431-437. doi:10.1016/j.ophtha.2009.07.032
41. Watanabe J., Sawaguchi S., Fukuchi T. et al. Effects of mitomycin C on the expression of proliferating cell nuclear antigen after filtering surgery in rabbits. Graefes Arch Clin Exp. Ophthalmol. 1997; 235(4):234-240. doi:10.1007/bf00941765
42. Li J., Pang L. Inf luence on tear film of postoperative 5-f luourouracil and intraoperative mitomycin C in glaucoma filtration surgery. Zhonghua Yan Ke Za Zhi. 2001; 37(1):43-47.
43. Mohammadi S.F., Ashrafi E., Norouzi N. et al. Effects of mitomycin-C on tear film, corneal biomechanics, and surface irregularity in mild to moderate myopic surface ablation: preliminary results. J Cataract Refract Surg. 2014; 40(6):937-942. doi:10.1016/j.jcrs.2013.10.043
44. Xin C., Wang N., Qiao L. The effect of the filtering bleb morphology on the ocular surface and comfort in patients with glaucoma. Ophthalmol China. 2010; 19:19-24.
45. Liu W., Li H., Lu D. et al. The tear f luid mucin 5AC change of primary angle-closure glaucoma patients after short-term medications and phacotrabeculectomy. Mol Vis. 2001; 16:2342-2346.
46. Akarsu C., Onol M., Hasanreisoglu B. Postoperative 5-f luorouracil versus intraoperative mitomycin C in high-risk glaucoma filtering surgery: extended follow up. Clin Exp Ophthalmol. 2003; 31(3):199-205. doi:10.1046/j.1442-9071.2003.00645.x
47. Skuta G.L., Beeson C.C., Higginbotham E.J. et al. Intraoperative mitomycin versus postoperative 5-fluorouracil in high-risk glaucoma filtering surgery. Ophthalmology. 1992; 99(3):438-444. doi:10.1016/s0161-6420(92)31951-7
48. Seibold L.K., Soohoo J.R., Ammar D.A., Kahook M.Y. Preclinical investigation of ab interno trabeculectomy using a novel dual-blade device. Am J Ophthalmol. 2013; 155(3): 524-529. doi:10.1016/j.ajo.2012.09.023
49. Ding C. A retrospective comparison of primary Baerveldt implantation versus trabeculectomy with mitomycin C. Ophthalmology. 2016; 123(4):789-795. doi:10.1016/j.ophtha.2016.02.048
50. Costa V.P., Smith M., Spaeth G.L. et al. Loss of visual acuity after trabeculectomy. Ophthalmology. 1993; 100(5):599-612. doi:10.1016/s0161-6420(93)31597-6
51. Masoumpour M., Nowroozzadeh M.H., Razeghinejad M. Current and future techniques in wound healing modulation after glaucoma filtering surgeries. Open Ophthalmol J. 2016; 10: 68-85. doi:10.2174/1874364101610010068
52. Management and therapy of dry eye disease: report of the Management and Therapy Subcommittee of the International Dry Eye WorkShop (2007). Ocular Surf. 2007; 5(2):163-78. doi:10.1016/s1542-0124(12)70085-x
53. Pf lugfelder S.C., Maskin S.L., Anderson B. et al. A randomized, doublemasked, placebo-controlled, multicenter comparison of loteprednol etabonate ophthalmic suspension, 0.5%, and placebo for treatment of keratoconjunctivitis sicca in patients with delayed tear clearance. Am J Ophthalmol. 2004; 138(3):444-457. doi:10.1016/j.ajo.2004.04.052
54. Marsh P., Pflugfelder S.C. Topical nonpreserved methylprednisolone therapy for keratoconjunctivitis sicca in Sjögren syndrome. Ophthalmology. 1999; 106(4):811-816. doi:10.1016/s0161-6420(99)90171-9
55. Yang C.Q., Sun W., Gu Y.S. A clinical study of the efficacy of topical steroids on dry eye. J Zhejiang Univ Sci B. 2006; 7(8):675-678
56. Starita R., Fellman R., Spaeth G. et al. Shortand long-term effects of postoperative corticosteroids on trabeculectomy. Ophthalmology. 1985; 92(7): 938-946. doi:10.1016/S0161-6420(85)33931-3
57. Araujo S.V., Spaeth G.L., Roth S.M., Starita R.J. A ten-year follow-up on a prospective, randomized trial of postoperative corticosteroids after trabeculectomy. Ophthalmology. 1995; 102(12):1753-1759. doi:10.1016/S0161-6420(95)30797-X
58. Levkovitch-Verbin H., Waserzoog Y., Vander S. et al. Minocycline mechanism of neuroprotection involves the Bcl-2 gene family in optic nerve transection. Int J Neurosci. 2014; 124(10):755-761. doi:10.3109/00207454.2013.878340
59. Almatlouh A., Bach-Holm D., Kessel L. Steroids and nonsteroidal antiinf lammatory drugs in the postoperative regime after trabeculectomy — which provides the better outcome? A systematic review and meta-analysis. Acta Ophthalmol. 2018; 97(2):146–57. doi:10.1111/aos.13919
60. SooHoo J.R., Seibold L.K., Laing A.E., Kahook M.Y. Bleb morphology and histology in a rabbit model of glaucoma filtration surgery using Ozurdex® or mitomycin-C. Mol Vis. 2012; 18:714-719.
61. Zada M., Pattamatta U., White A. Modulation of fibroblasts in conjunctival wound healing. Ophthalmology. 2008; 125(2):179-192. doi:10.1016/j.ophtha.2017.08.028
62. Holló G. Wound healing and glaucoma surgery: modulating the scarring process with conventional antimetabolites and new molecules. Dev Ophthalmol. 2017; 59:80-89.
63. Budenz D.L., Hoffman K., Zacchei A. Glaucoma filtering bleb dysesthesia. Am J Ophthalmol. 2001; 131(5):626–630. doi:10.1016/s0002-9394(00)00901-6
64. Mastropasqua R., Agnifili L., Mastropasqua L. Structural and molecular tear film changes in glaucoma. Curr Med Chem. 2019; 26(22):4225-4240. doi:10.2174/0929867325666181009153212
65. Quaranta L., Pizzolante T. Endophthalmitis after compression sutures for enlarged conjunctival filtration bleb following trabeculectomy. Ophthalmic Surg Lasers. 2009; 40(4):432-433. doi:10.3928/15428877-20096030-17
66. Kojima S., Inoue T., Kawaji T., Tanihara H. Tear f luid signs associated with filtration blebs, as demonstrated by three-dimensional anterior segment optical coherence tomography. Clin Ophthalmol. 2014; 8:767-772. doi:10.2147/OPTH.S59778
67. Lichter P.R., Musch D.C., Gillespie B.W. et al. CIGTS Study Group. Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery. Ophthalmology. 2001; 108(11):1943-1953. doi:10.1016/s0161-6420(01)00873-9
68. Burr J., Azuara-Blanco A., Avenell A., Tuulonen A. Medical versus surgical interventions for open angle glaucoma. Cochrane Database Syst Rev. 2012; 12(9): CD004399. doi:10.1002/14651858.CD004399.pub3
69. Skalicky S.E., Goldberg I., McCluskey P. Ocular surface disease and quality of life in patients with glaucoma. Am J Ophthalmol. 2012; 153(1):1-9. doi:10.1016/j.ajo.2011.05.033
70. Guedes R.A., Guedes V.M., Freitas S.M., Chaoubah A. Quality of life of medically versus surgically treated glaucoma patients. J Glaucoma. 2013; 22(5):369-373. doi:10.1097/ijg.0b013e31824ceb8b
Review
For citations:
Nagornova Z.M., Seleznev A.V., Kuroyedov A.V., Gazizova I.R., Borisova E.A. Ocular surface changes after filtration surgery. National Journal glaucoma. 2020;19(3):89-96. (In Russ.) https://doi.org/10.25700/NJG.2020.03.10