OCT angiography in the assessment of central retinal structure under induced hypotension
https://doi.org/10.25700/NJG.2021.01.06
Abstract
Today the only available treatment option for patients with primary open-angle glaucoma is lowering intraocular pressure with medication, laser or surgical procedures. However, besides the mechanical factor, pathogenesis of glaucoma also involves the vascular factor, which in the future may become a new treatment target for slowing chronic neurodegeneration. Optical coherence tomography angiography (OCT-A) is a relatively new method for studying the microcirculation in the retina and optic nerve head. It has many advantages over other methods used for studying ocular blood flow including non-invasiveness, reproducibility and repeatability of results. Glaucoma is known to affect the hemodynamic parameters of the optic nerve head, peripapillary retina and macular region. This review analyzes available data on the effects of glaucoma surgeries and, consequently, induced hypotension on OCT-A parameters of microcirculation in the macular region.
About the Authors
V. P. ErichevRussian Federation
Dr. Sci. (Med.), Professor, Head of the Glaucoma Department
11A Rossolimo St., Moscow, 119021
E. A. Ragozina
Russian Federation
Junior Researcher at the Glaucoma Department
11A Rossolimo St., Moscow, 119021
References
1. Tham Y.C., Li X., Wong T.Y., Quigley H.A., Aung T., Cheng C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014; 121(11):2081-2090. doi: 10.1016/j.ophtha.2014.05.013
2. Yanagi M., Kawasaki R., Wang J.J., Wong T.Y., Crowston J., Kiuchi Y. Vascular risk factors in glaucoma: a review. Clin Exp Ophthalmol. 2011; 39(3):252-258. doi:10.1111/j.1442-9071.2010.02455.x
3. Wareham L.K., Calkins D.J. The neurovascular unit in glaucomatous neurodegeneration. Front Cell Dev Biol. 2020; 8:452. doi:10.3389/fcell.2020.00452
4. Newman A., Andrew N., Casson R. Review of the association between retinal microvascular characteristics and eye disease. Clin Exp Ophthalmol. 2018; 46(5):531-552. doi:10.1111/ceo.13119
5. Rosenfeld P.J., Durbin M.K., Roisman L., Zheng F., Miller A., Robbins G., Schaal K.B., Gregori G. ZEISS Angioplex™ spectral domain optical coherence tomography angiography: technical aspects. Dev Ophthalmol. 2016; 56:18-29. doi:10.1159/000442773
6. Coscas G., Lupidi M., Coscas F. Image analysis of optical coherence tomography angiography. Dev Ophthalmol. 2016; 56:30-36. doi:10.1159/000442774
7. Bekkers A., Borren N., Ederveen V., Fokkinga E., Andrade De Jesus D., Sánchez Brea L., Klein S., van Walsum T., Barbosa-Breda J., Stalmans I. Microvascular damage assessed by optical coherence tomography angiography for glaucoma diagnosis: a systematic review of the most discriminative regions. Acta Ophthalmol. 2020; 98(6):537-558. doi:10.1111/aos.14392
8. Spaide R.F., Klancnik J.M. Jr, Cooney M.J. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015; 133(1):45-50. doi:10.1001/jamaophthalmol.2014.3616
9. Yaoeda K., Shirakashi M., Funaki S., Funaki H., Nakatsue T., Abe H. Measurement of microcirculation in the optic nerve head by laser speckle flowgraphy and scanning laser Doppler flowmetry. Am J Ophthalmol. 2000; 129(6):734-739. doi:10.1016/s0002-9394(00)00382-2
10. Manalastas P.I.C., Zangwill L.M., Saunders L.J., Mansouri K., Belghith A., Suh M.H., Yarmohammadi A., Penteado R.C., Akagi T., Shoji T., Weinreb R.N. Reproducibility of optical coherence tomography angiography macular and optic nerve head vascular density in glaucoma and healthy eyes. J Glaucoma. 2017; 26(10):851-859. doi:10.1097/IJG.0000000000000768
11. Jia Y., Wei E., Wang X., Zhang X., Morrison J.C., Parikh M., Lombardi L.H., Gattey D.M., Armour R.L., Edmunds B., Kraus M.F., Fujimoto J.G., Huang D. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014; 121(7):1322-1332. doi:10.1016/j.ophtha.2014.01.021
12. Geyman L.S., Garg R.A., Suwan Y., Trivedi V., Krawitz B.D., Mo S., Pinhas A., Tantraworasin A., Chui T.Y.P., Ritch R., Rosen R.B. Peripapillary perfused capillary density in primary open-angle glaucoma across disease stage: an optical coherence tomography angiography study. Br J Ophthalmol. 2017; 101(9):1261-1268. doi:10.1136/bjophthalmol-2016-309642
13. Yarmohammadi A., Zangwill L.M., Diniz-Filho A., Suh M.H., Man-lastas P.I., Fatehee N., Yousefi S., Belghith A., Saunders L.J., Medeiros F.A., Huang D., Weinreb R.N. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest Ophthalmol Vis Sci. 2016; 57(9):OCT451-459. doi:10.1167/iovs.15-18944
14. Anctil J.L., Anderson D.R. Early foveal involvement and generalized depression of the visual field in glaucoma. Arch Ophthalmol. 1984; 102(3):363-370. doi:10.1001/archopht.1984.01040030281019
15. Curcio C.A., Allen K.A. Topography of ganglion cells in human retina. J Comp Neurol. 1990; 300(1):5-25. doi:10.1002/cne.903000103
16. Hood D.C., Raza A.S., de Moraes C.G., Liebmann J.M., Ritch R. Glaucomatous damage of the macula. Prog Retin Eye Res. 2013; 32:1-21. doi:10.1016/j.preteyeres.2012.08.003
17. Oddone F., Lucenteforte E., Michelessi M., Rizzo S., Donati S., Parravano M., Virgili G. Macular versus retinal nerve fiber layer parameters for diagnosing manifest glaucoma: a systematic review of diagnostic accuracy studies. Ophthalmology. 2016; 123(5):939-949. doi:10.1016/j.ophtha.2015.12.041
18. Kurysheva N.I., Maslova E.V., Trubilina A.V., Ardzhevnishvili T.D., Fomin A.V. Macular blood flow in glaucoma. Vestn Oftalmol. 2017; 133(2):29-38. (In Russ.) doi:10.17116/oftalma2017133229-37
19. Kurysheva N.I., Maslova E.V., Trubilina A.V., Lagutin M.B. OCTangiography (OCT-A) in early glaucoma detection and monitoring. National Journal glaucoma. 2016; 15(4):20-31. (In Russ.)
20. Hou H., Moghimi S., Zangwill L.M., Shoji T., Ghahari E., Penteado R.C., Akagi T., Manalastas P.I.C., Weinreb R.N. Macula vessel density and thickness in early primary open-angle glaucoma. Am J Ophthalmol. 2019; 199:120-132. doi:10.1016/j.ajo.2018.11.012
21. Wang X., Jiang C., Ko T., Kong X., Yu X., Min W., Shi G., Sun X. Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol. 2015; 253(9):1557-1564. doi:10.1007/s00417-015-3095-y
22. Rao H.L., Pradhan Z.S., Weinreb R.N., Reddy H.B., Riyazuddin M., Dasari S., Palakurthy M., Puttaiah N.K., Rao D.A., Webers C.A. Regional comparisons of optical coherence tomography angiography vessel density in primary open-angle glaucoma. Am J Ophthalmol. 2016; 171:75-83. doi:10.1016/j.ajo.2016.08.030
23. Patel N., McAllister F., Pardon L., Harwerth R. The effects of graded intraocular pressure challenge on the optic nerve head. Exp Eye Res. 2018; 169:79-90. doi:10.1016/j.exer.2018.01.025
24. Zhang Q., Jonas J.B., Wang Q., Chan S.Y., Xu L., Wei W.B., Wang Y.X. Optical coherence tomography angiography vessel density changes after acute intraocular pressure elevation. Sci Rep. 2018; 8(1):6024. doi:10.1038/s41598-018-24520-x
25. Holló G. Influence of large intraocular pressure reduction on peripapillary OCT vessel density in ocular hypertensive and glaucoma eyes. J Glaucoma. 2017; 26(1):e7-e10. doi:10.1097/IJG.0000000000000527
26. Chihara E., Dimitrova G., Chihara T. Increase in the OCT angiographic peripapillary vessel density by ROCK inhibitor ripasudil instillation: a comparison with brimonidine. Graefes Arch Clin Exp Ophthalmol. 2018; 256(7):1257-1264. doi:10.1007/s00417-018-3945-5
27. Trible J.R., Sergott R.C., Spaeth G.L., Wilson R.P., Katz L.J., Moster M.R., Schmidt C.M. Trabeculectomy is associated with retrobulbar hemodynamic changes. A color Doppler analysis. Ophthalmology. 1994; 101(2):340-351. doi:10.1016/s0161-6420(13)31332-3
28. Synder A., Augustyniak E., Laudańska-Olszewska I., Wesołek-Czernik A. Evaluation of blood-flow parameters in extraocular arteries in patients with primary open-angle glaucoma before and after surgical treatment. Klin Oczna. 2004; 106(1-2 Suppl):206-208.
29. Berisha F., Schmetterer K., Vass C., Dallinger S., Rainer G., Findl O., Kiss B., Schmetterer L. Effect of trabeculectomy on ocular blood flow. Br J Ophthalmol. 2005; 89(2):185-188. doi:10.1136/bjo.2004.048173
30. Kuerten D., Fuest M., Koch E.C., Remky A., Plange N. Long term effect of trabeculectomy on retrobulbar haemodynamics in glaucoma. Ophthalmic Physiol Opt. 2015; 35(2):194-200. doi:10.1111/opo.12188
31. Januleviciene I., Siaudvytyte L., Diliene V., Barsauskaite R., Siesky B., Harris A. Effect of trabeculectomy on ocular hemodynamic parameters in pseudoexfoliative and primary open-angle glaucoma patients. J Glaucoma. 2015; 24(5):e52-6. doi:10.1097/IJG.0000000000000055
32. Zéboulon P., Lévêque P.M., Brasnu E., et al. Effect of surgical intraocular pressure lowering on peripapillary and macular vessel density in glaucoma patients: an optical coherence tomography angiography study. J Glaucoma. 2017; 26(5):466-472. doi:10.1097/IJG.0000000000000652
33. Shin J.W., Sung K.R., Uhm K.B. et al. Peripapillary microvascular improvement and lamina cribrosa depth reduction after trabeculectomy in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2017; 58(13):5993-5999. doi:10.1167/iovs.17-22787
34. Kim J.A., Kim T.W., Lee E.J., Girard M.J.A., Mari J.M. Microvascular changes in peripapillary and optic nerve head tissues after trabeculectomy in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2018; 59(11):4614-4621. doi:10.1167/iovs.18-25038
35. Lee E.J., Kim T.W. Lamina cribrosa reversal after trabeculectomy and the rate of progressive retinal nerve fiber layer thinning. Ophthalmology. 2015; 122(11):2234-2242. doi:10.1016/j.ophtha.2015.07.020
36. Lommatzsch C., Rothaus K., Koch J.M., Heinz C., Grisanti S. Retinal perfusion 6 months after trabeculectomy as measured by optical coherence tomography angiography. Int Ophthalmol. 2019; 39(11): 2583-2594. doi:10.1007/s10792-019-01107-7
37. Ch'ng T.W., Gillmann K., Hoskens K., Rao H.L., Mermoud A., Mansouri K. Effect of surgical intraocular pressure lowering on retinal structures — nerve fibre layer, foveal avascular zone, peripapillary and macular vessel density: 1 year results. Eye (Lond). 2020; 34(3): 562-571. doi:10.1038/s41433-019-0560-6
38. Zhao Z., Wen W., Jiang C., Lu Y. Changes in macular vasculature after uncomplicated phacoemulsification surgery: Optical coherence tomography angiography study. J Cataract Refract Surg. 2018; 44(4): 453-458. doi:10.1016/j.jcrs.2018.02.014
39. Raghu N., Pandav S.S., Kaushik S., Ichhpujani P., Gupta A. Effect of trabeculectomy on RNFL thickness and optic disc parameters using optical coherence tomography. Eye (Lond). 2012; 26(8):1131-1137. doi:10.1038/eye.2012.115
40. Alnawaiseh M., Müller V., Lahme L., Merté R.L., Eter N. Changes in flow density measured using optical coherence tomography angiography after iStent insertion in combination with phacoemulsification in patients with open-angle glaucoma. J Ophthalmol. 2018; 2018:2890357. doi:10.1155/2018/2890357
Review
For citations:
Erichev V.P., Ragozina E.A. OCT angiography in the assessment of central retinal structure under induced hypotension. National Journal glaucoma. 2021;20(1):47-54. (In Russ.) https://doi.org/10.25700/NJG.2021.01.06