Preview

National Journal glaucoma

Advanced search

Biometric and morphometric parameters of the lamina cribrosa in patients with different stages of primary open-angle glaucoma

Abstract

PURPOSE. To compare the thickness of the prelaminar nerve fiber layer and the depth of the lamina cribrosa in patients with different stages of primary open-angle glaucoma (POAG).

METHODS. We examined 39 patients (71 eyes) with different stages of primary open-angle glaucoma and 26 patients (52 eyes) without ophthalmic pathologies. The age of patients in the main and control groups was 63–82 years. Specific hypotensive instillations regimen was selected for the patients of the main group. In addition to assessing the general ophthalmic status of the study patients, their biomechanical parameters were determined using the Ocular Response Analyzer device (ORA; "Reichert Technologies", USA). Additionally, all patients underwent optical coherence tomography of the optic nerve head involving calculation of the lamina cribrosa depth (LCD) and the thickness of the prelaminar nerve fiber layer (tPNFL). Spearman's test was used as statistical evaluation criteria.

RESULTS. In patients with stages I and II POAG, lamina cribrosa depth amounted to 386±77 (p<0.45) and 380±50 μm (p<0.14), respectively. There was no statistically significant difference in LCD in comparison with the control group (389±96 µm), neither in patients with stages I nor II of the disease. At the same time, patients with stage III POAG were found to have statistically significantly the highest LCD relative to the norm (595±162 μm) (p<0.002). In healthy controls, tPNFL values were 334±187 µm, while tPNFLmin was 238±203 µm. Even in stage I POAG, tPNFLmin (158±106 μm) and tPNFL (205±94 μm) were statistically significantly lower than tPNFL and tPNFLmin in the control group (334±187 and 238±203 μm, respectively).

CONCLUSION. Optical coherence tomography allows assessing biometric parameters of all structures of the optic nerve head, including the lamina cribrosa. When analyzing patients with POAG by stages, it is important to note that the lamina cribrosa depth does not significantly differ relative to the control group. At the same time, the prelaminar nerve fiber layer thickness is significantly reduced at the initial stage of POAG and can serve as a factor in differential diagnosis of glaucoma. Thus, studying the parameters of the lamina cribrosa using spectral OCT at various stages of POAG opens up new possibilities in the diagnostics of the glaucomatous process at its initial stages.

About the Authors

L. L. Arutyunyan
Russian Medical Academy of Continuous Professional Education, Department of Ophthalmology; Eye care center “East Sight Recovery” LLC
Russian Federation

 Dr. Sci. (Med.), Professor at the Ophthalmology Department,
Head of the Diagnostics Department 

 2/1 Barricadnaya St., Moscow, 125993 

 10 bld. 1 Poliny Osipenko St., Moscow,  123557 



S. Yu. Anisimova
Eye care center “East Sight Recovery” LLC
Russian Federation

 Dr. Sci. (Med.), Professor, Director 

 10 bld. 1 Poliny Osipenko St., Moscow, 123557 



Yu. S. Morozova
Russian Medical Academy of Continuous Professional Education, Department of Ophthalmology
Russian Federation

 post-graduate student at the Ophthalmology Department 

 2/1 Barricadnaya St., Moscow,  125993 



S. I. Anisimov
Eye care center “East Sight Recovery” LLC; A.I. Yevdokimov Moscow State University of Medicine and Dentristy
Russian Federation

 Dr. Sci. (Med.), Professor at the Ophthalmology Department, Scientific Director 

 10 bld. 1 Poliny Osipenko St., Moscow, 123557 

 20/1 Delegatskaya St., Moscow,  127473 



References

1. Barkana Y., Dorairaj S. Re: Tham et al.: Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014; 121:2081-2090. Ophthalmology. 2015; 122(7):e40-41. doi: 10.1016/j.ophtha.2014.11.030 PMID: 26111782.

2. Glaukoma. Nacional'noe rukovodstvo. [Glaucoma. National leadership]. Eds E.A. Egorov. M.: GJeOTAR-Media. 2015. 456 p. ISBN 978-5-9704-3314-0 (In Russ.)

3. Nesterov A.P., Aliab'eva Zh.Iu., Lavrent'ev A.V. Normal-pressure glaucoma: a hypothesis of pathogenesis. Vestn Oftalmol. 2003; 119(2):3-6. PMID: 13677995. (In Russ.)

4. Volkov V.V. Glaukoma pri psevdonormal'nom davlenii. Rukovodstvo dlja vrachej [Glaucoma with pseudonormal pressure. A guide for doctors]. Moscow: Medicina; 2001. 350 p. (In Russ.)

5. Spoerl E., Boehm A.G., Pillunat L.E. The influence of various substances on the biomechanical behavior of lamina cribrosa and peripapillary sclera. Invest Ophthalmol Vis Sci. 2005; 46(4):1286–1290.

6. Iomdina E.N., Baujer S.M., KotljarK.E. Biomehanika glaza: teoreticheskie aspekty i klinicheskie prilozhenija [Biomechanics of the eye: theoretical aspects and clinical applications]. Eds V.V. Neroev. Moscow: Real Tajm; 2015. 208 p. ISBN 978-5-903025-57-2. (In Russ.)

7. Burgoyne C.F., Downs J.C. Premise and prediction — how optic nerve head biomechanics underlies the susceptibility and clinical behavior of the aged optic nerve head. J Glaucoma. 2008; 17:318–328.

8. Albon J., Purslow P.P., Karwatowski W.S., Easty D.L. Age related compliance of the lamina cribrosa in human eyes. Br J Ophthalmol. 2000; 84:318–323.

9. Quigley H.A., Arora K., Idrees S., Solano F., Bedrood S., Lee C., Jefferys J., Nguyen T.D. Biomechanical responses of lamina cribrosa to intraocular pressure change assessed by optical coherence tomography in glaucoma eyes. Invest Ophthalmol Vis Sci. 2017; 58(5): 2566–2577.

10. Naranjo-Bonilla P., Giménez-Gómez R., Ríos-Jiménez D., Varas-Fabra M.L., Muñoz-Villanueva M.D., García-Catalán R., Font-Ugalde P., Poblador-Fernández M.S., Lancho-Alonso J.L., Gallardo-Galera J.M. Enhanced depth OCT imaging of the lamina cribrosa for 24 hours. J Ophthalmol. 2017; 18.10(2):306–309. doi:10.18240/ijo.2017.02.20

11. Kim Y.W., Jeoung J.W., Kim D.W., Girard M.J.A., Mari J.M., Park K.H. et al. Clinical assessment of lamina cribrosa curvature in eyes with primary open-angle glaucoma. PLoS ONE. 2016; 11(3): e0150260. doi:10.1371/journal.pone.0150260

12. Ha A., Kim T.J., Girard M.J.A., Park K.H. et al. Baseline lamina cribrosa curvature and subsequent visual field progression rate in primary open-angle glaucoma. Ophthalmology. 2018; 125(12):1898-1906. doi:10.1016/j.ophtha.2018.05.017

13. Volkov V.V., Simakova I.L., Kulikov A.N., Harakozov A.S., Sulejmanova A.R., Filippov I.A. New morphometric criteria in the study of the pathogenesis of normal pressure glaucoma. Vestnik oftal'mologii. 2020; 136(2):49-55. (In Russ.) doi:10.17116/oftalma202013602149

14. Barrancos C., Rebolleda G., Oblanca N., Cabarga C., Muñoz-Negrete F.J. Changes in lamina cribrosa and prelaminar tissue after deep sclerectomy. Eye (Lond). 2014; 28(1):58-65. doi: 10.1038/eye.2013.238


Review

For citations:


Arutyunyan L.L., Anisimova S.Yu., Morozova Yu.S., Anisimov S.I. Biometric and morphometric parameters of the lamina cribrosa in patients with different stages of primary open-angle glaucoma. National Journal glaucoma. 2021;20(3):11-19. (In Russ.)

Views: 187


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)