Preview

National Journal glaucoma

Advanced search

Analysis of changes in structural and hemodynamic parameters of the retina and foveolar avascular zone in patients with primary open-angle glaucoma and diabetes mellitus observed in long-term follow-up

https://doi.org/10.53432/2078-4104-2021-20-3-59-77

Abstract

PURPOSE. To study the changes in structural and hemodynamic parameters of the retina and foveolar avascular zone (FAZ) over time in patients with primary open-angle glaucoma (POAG) and diabetes mellitus (DM) observed in long-term follow-up.

MATERIALS AND METHODS. The study included 258 patients (258 eyes) divided into five groups: group 1 — 58 patients (58 eyes) with stage I POAG and DM; group 2 — 50 patients (50 eyes) with stage I POAG; group 3 — 50 patients (50 eyes) with stage III POAG and DM; group 4 — 50 patients (50 eyes) with stage III POAG; group 5 — 50 patients (50 eyes) with DM. Patients underwent comprehensive ophthalmological examination, spectral domain optical coherence tomography (SD-OCT), optical coherence tomo-graphy angiography (OCT-A) of the macular region. The follow-up lasted 24 months.

RESULTS. Analysis of the initial parameters in groups of patients with comorbidities showed the lowest values compared to controls, which were progressively worsening. MD in the group with DM + stage I POAG had reliably decreased after 12 months (by 5.05%), after 24 months by 12.12% (p≤0.05). The speed of GCL+IPL loss in groups 1 and 3 during the first year of observation was almost equal for initial and advanced glaucoma — 1.35 (-2.03%) and 1.32 (-2.36%) µm/year, but in group 3 the loss had doubled after two years (2.48 (-4.44%) and 1.41 (2.12%) µm/year). Deterioration of hymodynamic parameters in the macular region in groups 1 and 3 was noted primarily in the inner sectors (whole image vessel density in parafovea (PF wiVD) -0.79% during the first, and -2.57% during the second year in initial glaucoma, -0.6% and -1.24% in advanced, whole image vessel density in parafovea (PF wiVD) -0.2% and -1.22%, -0.66% and -1.56%, respectively). Parameters of FAZ had changed significantly after 2 years in patients with stage I POAG and DM: its area size had increased by 10.2%, perimeter by 4.49%, circularity index had decreased by 3.17%.

CONCLUSION. Comorbidity of POAG and DM is accompanied by development and quick progression of significant changes in structural and hemodynamic parameters of the retina as observed by this long-term follow-up.

About the Authors

A. Zh. Fursova
Novosibirsk State Medical University; Novosibirsk State Region Hospital
Russian Federation

 Dr. Sci. (Med.), Head of the Ophthalmology Department 

52 Krasniy Prospect, Novosibirsk,  630091 

130 Nemirovich-Danchenko St., Novosibirsk,  630087 



Y. A. Gamza
Novosibirsk State Medical University; Novosibirsk State Region Hospital
Russian Federation

 Ophthalmologist, Assistant Professor at the Ophthalmology Department 

52 Krasniy Prospect, Novosibirsk,  630091 

130 Nemirovich-Danchenko St., Novosibirsk,  630087 



O. G. Gusarevich
Novosibirsk State Medical University; Novosibirsk State Region Hospital
Russian Federation

 Dr. Sci. (Med.), Professor at the Ophthalmology Department 

52 Krasniy Prospect, Novosibirsk,  630091 

130 Nemirovich-Danchenko St., Novosibirsk,  630087 



A. S. Derbeneva
Novosibirsk State Medical University; Novosibirsk State Region Hospital
Russian Federation

 Ophthalmologist, Assistant Professor at the Ophthalmology Department 

52 Krasniy Prospect, Novosibirsk,  630091 

130 Nemirovich-Danchenko St., Novosibirsk,  630087 



M. V. Vasilyeva
Novosibirsk State Region Hospital
Russian Federation

 Ophthalmologist 

130 Nemirovich-Danchenko St., Novosibirsk,  630087 



N. V. Chubar
Novosibirsk State Region Hospital
Russian Federation

 Ophthalmologist 

130 Nemirovich-Danchenko St., Novosibirsk,  630087 



M. S. Tarasov
Novosibirsk State Medical University; Novosibirsk State Region Hospital
Russian Federation

 Cand. Sci. (Med.), Ophthalmologist, Assistant Professor at the Ophthalmology Department 

 52 Krasniy Prospect, Novosibirsk,  630091 

 130 Nemirovich-Danchenko St., Novosibirsk,  630087 



References

1. Tan O., Chopra V., Lu A.T. et al. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology. 2009; 116:2305–2314. doi:10.1016/j.ophtha.2009.05.025

2. Kim Y.J., Kang M.H., Cho H.Y., Lim H.W., Seong M. Comparative study of macular ganglion cell complex thickness measured by spectral-domain optical coherence tomography in healthy eyes, eyes with preperimetric glaucoma, and eyes with early glaucoma. Jpn J Ophthalmol. 2014; 58(3):244–251. doi:10.1007/s10384-014-0315-7

3. Sung K.R., Sun J.H., Na J.H., Lee J.Y., Lee Y. Progression detection capability of macular thickness in advanced glaucomatous eyes. Ophthalmology. 2012; 119(2):308–313. doi:10.1016/j.ophtha.2011.08.022

4. Na J.H., Sung K.R., Lee J.R., Lee K.S., Baek S., Kim H.K., Sohn Y.H. Detection of glaucomatous progression by spectral-domain optical coherence tomography. Ophthalmology. 2013; 120(7):1388–1395. doi:10.1016/j.ophtha.2012.12.014

5. Yip V.C.H., Wong H.T., Yong V.K.Y. et al. Optical coherence tomography angiography of optic disc and macula vessel density in glaucoma and healthy eyes. J Glaucoma. 2019; 28(1):80–87. doi:10.1097/IJG.00000000000101125

6. Yarmohammadi A., Zangwill L.M., Manalastas P.I.C., Fuller N.J. et al. Peripapillary and macular vessel density in patients with primary open-angle glaucoma and unilateral visual field loss. Ophthalmology. 2018; 125(4):578–587. doi: 10.1016/j.ophtha.2017.10.029

7. Moghimi S., Zangwill L.M., Penteado R.C. et al. Macular and optic nerve head vessel density and progressive retinal nerve fiber layer loss in glaucoma. Ophthalmology. 2018; 125(11):1720–1728. doi:10.1016/j.ophtha.2018.05.006

8. Fursova A.Zh., Gamza Yu.A., Tarasov M.S., Vasilyeva M.V., Derbeneva A.S. A comparative study of structural and microcirculatory parameters in patients with primary open-angle glaucoma and diabetes mellitus. Russian Ophthalmological Journal. 2020; 13(3):42–50. (In Russ.) doi:10.21516/2072-0076-2020-13-3-42-50

9. Hou H., Shoji T., Zangwill L.M., Moghimi S. Progression of primary open-angle glaucoma in diabetic and nondiabetic patients. Am J Ophthalmol. 2018; 189:1–9. doi:10.1016/j.ajo.2018.02.002

10. Wang Y., Xin C., Li M., Swain D.L., Cao K., Wang H., Wang N. Macular vessel density versus ganglion cell complex thickness for detection of early primary open-angle glaucoma. BMC Ophthalmol. 2020; 20(1):17. doi:10.1186/s12886-020-1304-x

11. Poli M., Cornut P.L., Nguyen A.M., De Bats F., Denis P. Accuracy of peripapillary versus macular vessel density in diagnosis of early to advanced primary open angle glaucoma. J Fr Ophtalmol. 2018; 41(7):619–629.

12. Triolo G., Rabiolo A., Shemonski N.D., Fard A., Di Matteo F., Sacconi R. et al. Optical coherence tomography angiography macular and peripapillary vessel perfusion density in healthy subjects, glaucoma suspects, and glaucoma patients. Invest Ophthalmol Vis Sci. 2017; 58(13):5713–5722.

13. Chung J.K., Hwang Y.H., Wi J.M., Kim M., Jung J.J. Glaucoma diagnostic ability of the optical coherence tomography angiography vessel density parameters. Curr Eye Res. 2017; 42(11):1458–1467.

14. Bojikian K., Nobrega P., Wen J.C., Zhang Q., Mudumbai R.C., Johnstone M.A., Wang R.K., Chen P.P. Macular vascular microcirculation in eyes with open-angle glaucoma using different visual field severity classification systems. J Glaucoma. 2019; 28(9):790–796. doi:10.1097/IJG.0000000000001308

15. Chen H.S., Liu C.H., Wu W.C., Tseng H.J., Lee Y.S. Optical coherence tomography angiography of the superficial microvasculature in the macular and peripapillary areas in glaucomatous and healthy eyes. Invest Ophthalmol Vis Sci. 2017; 58(9):3637–3645. doi: 10.1167/iovs.17-21846

16. Penteado R.C., Zangwill L.M., Daga F.B. et al. Optical coherence tomography angiography macular vascular density measurements and the Central 10-2 visual field in glaucoma. J Glaucoma. 2018; 27(6):481–489. doi:10.1097/IJG.0000000000000964

17. Freiberg F.J., Pfau M., Wons J., Wirth M.A., Becker M.D., Michels S. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2016; 254(6):1051–1058. doi:10.1007/s00417-015-3148-2

18. Kwon J., Choi J., Shin J.W., Lee J., Kook M.S. Glaucoma diagnostic capabilities of foveal avascular zone parameters using optical coherence tomography angiography according to visual field defect location. J Glaucoma. 2017; 26(12):1120–1129. doi:10.1097/IJG.0000000000000800

19. Shoji T., Zangwill L.M., Akagi T. et al. Progressive macula vessel density loss in primary open-angle glaucoma: a longitudinal study. Am J Ophthalmol. 2017; 182:107e117.

20. Spaide F. Measurable aspects of the retinal neurovascular unit in diabetes, glaucoma, and controls. Am J Ophthalmol. 2019; 207:395–409. doi:10.1016/j.ajo.2019.04.035

21. Sohn E.H., van Dijk H.W., Jiao C. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci USA. 2016; 113(19):E2655–64. doi:10.1073/pnas.1522014113

22. Wu Z., Weng D.S.D., Thenappan A., Ritch R., Hood D.C. Evaluation of a region-of-interest approach for detecting progressive glaucomatous macular damage on optical coherence tomography. Transl Vis Sci Technol. 2018; 7(2):14. doi:10.1167/tvst.7.2.14

23. Ng D.S., Chiang P.P., Tan G., Cheung C.G., Cheng C.Y., Cheung C.Y., Wong T.Y., Lamoureux E.L., Ikram M.K. Retinal ganglion cell neuronal damage in diabetes and diabetic retinopathy. Clin Exp Ophthalmol. 2016; 44(4):243–250. doi:10.1111/ceo.12724.


Review

For citations:


Fursova A.Zh., Gamza Y.A., Gusarevich O.G., Derbeneva A.S., Vasilyeva M.V., Chubar N.V., Tarasov M.S. Analysis of changes in structural and hemodynamic parameters of the retina and foveolar avascular zone in patients with primary open-angle glaucoma and diabetes mellitus observed in long-term follow-up. National Journal glaucoma. 2021;20(3):59-77. (In Russ.) https://doi.org/10.53432/2078-4104-2021-20-3-59-77

Views: 448


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)