Preview

National Journal glaucoma

Advanced search

Studying the role of the choroid and lens in the development of primary anterior chamber angle closure

https://doi.org/10.53432/2078-4104-2022-21-1-3-13

Abstract

PURPOSE. To study the role of the choroid and lens in the development of primary anterior chamber angle closure.

MATERIAL AND METHODS. The study included 90 patients aged 47 to 80 years (30 with primary angle closure (PAC), 30 with suspected primary angle closure (PACs), and 30 in the control group) who underwent swept source optical coherence tomography (SS-OCT). The following parameters were analyzed: subfoveolar choroidal thickness (SFCT), intraocular pressure (IOP), axial length (AL), anterior chamber depth (ACD), lens vault (LV), iris curvature (ICurv) and iris thickness (IT750), angle opening distance (AOD500, AOD750), and trabecular-iris space area (TISA500, TISA750).

RESULTS. SFCT in PAC (341±59 µm) and PACs (340±51 µm) was higher than in the control group (257.0±37.0 µm, p<0.05). In PAC and PACs, the correlations of SFCT with age, AL, LV, ICurv, IT750 were revealed (p<0.05 for each), as well as correlations of LV with age, IOP, ACD, ICurv, IT750, AOD500, AOD750, TISA500, TISA750 were found (p<0.05 for each). The correlation of SFCT with IOP was determined only in PAC (p=-0.476; p=0.008).

CONCLUSION. The increase in the choroidal thickness in macula in both PACs and PAC compared with the controls, as well as the correlations of subfoveolar choroidal thickness with lens vault and iris parameters suggest the involvement of the choroid in the pathogenesis of primary angle closure disease (PACD). The correlations of lens vault with IOP, as well as the parameters of anterior chamber and iris indicate the prevailing role of the lens in the development of PACD and the need for its early replacement.

About the Authors

N. I. Kurysheva
Medical Biological University of Innovations and Continuing Education of the Federal Biophysical Center named after A.I. Burnazyan; Ophthalmological Center of the Federal Medical-Biological Agency, Federal Medical Biophysical Center named after A.I. Burnazyan
Russian Federation

Doc. Sci. (Med.), Professor, Head of the Academic Department of Ophthalmology, Head of the Consultative and Diagnostic Department

46 Zhivopisnaya St., building 8, Moscow, 123098
15 Gamalei St., Moscow, 123098



G. A. Sharova
Eye Clinic of Doctor Belikova LLC
Russian Federation

Head of the Diagnostic Ophthalmology Department, laser surgeon

26/2 Budenny Ave., Moscow, 105118



E. I. Belikova
Institute for Advanced Studies of the Federal Medical-Biological Agency; Eye Clinic of Doctor Belikova LLC
Russian Federation

Doc. Sci. (Med.), Associate Professor, Professor at the Academic Department of Ophthalmology, Deputy Director General for Science

91 Volokolamsk Highway, Moscow, 125371
26/2 Budenny Ave., Moscow, 105118



References

1. Quigley HA. What's the choroid got to do with angle closure? Arch Ophthalmol 2009; 127(5):693-694. https://doi.org/10.1001/archophthalmol.2009.80

2. Quigley HA, Friedman DS, Congdon NG. Possible mechanisms of primary angle-closure and malignant glaucoma. J Glaucoma 2003; 12(2):167-180. https://doi.org/10.1097/00061198-200304000-00013

3. Arora KS, Jefferys JL, Maul EA, Quigley HA. The choroid is thicker in angle closure than in open angle and control eyes. Invest Ophthalmol Vis Sci 2012; 53(12):7813-7818. https://doi.org/10.1167/iovs.12-10483

4. Kumar RS, Quek D, Lee KY, et al. Confirmation of the presence of uveal effusion in Asian eyes with primary angle closure glaucoma: an ultrasound biomicroscopy study. Arch Ophthalmol 2008; 126(12): 1647-1651. https://doi.org/10.1001/archophthalmol.2008.514

5. Yang M, Aung T, Husain R, et al. Choroidal expansion as a mechanism for acute primary angle closure: an investigation into the change of biometric parameters in the first 2 weeks. Br J Ophthalmol. 2005; 89(3):288-290. https://doi.org/10.1136/bjo.2004.048686

6. How AC, Baskaran M, Kumar RS, et al. Changes in anterior segment morphology after laser peripheral iridotomy: an anterior segment optical coherence tomography study. Ophthalmology 2012; 119(7):1383-1387. https://doi.org/10.1016/j.ophtha.2012.01.019

7. Huang W, Wang W, Gao X, et al. Choroidal thickness in the subtypes of angle closure: an EDI-OCT study. Invest Ophthalmol Vis Sci 2013; 54(13):7849-7853. https://doi.org/10.1167/iovs.13-13158

8. Chen X, Guo X, Xu X, Xiao H, Liu X. Is Thicker Choroid a Risk Factor for Malignant Glaucoma?. Ophthalmic Res 2018; 60(3):161-168. https://doi.org/10.1159/000490914

9. Kurysheva N.I., Lepeshkina L.V., Shatalova E.O. Comparative study of factors associated with the progression of primary open-angle glaucoma and primary angle-closure glaucoma. Vestnik oftal’mologii 2020; 136(2):64-72. (In Russ.) https://doi.org/10.17116/oftalma202013602164

10. Hata M, Hirose F, Oishi A, Hirami Y, Kurimoto Y. Changes in choroidal thickness and optical axial length accompanying intraocular pressure increase. Jpn J Ophthalmol 2012; 56(6):564-568. https://doi.org/10.1007/s10384-012-0173-0

11. Wang YX, Jiang R, Ren XL, et al. Intraocular pressure elevation and choroidal thinning. Br J Ophthalmol 2016; 100(12):1676-1681. https://doi.org/10.1136/bjophthalmol-2015-308062

12. Foster PJ, Buhrmann R, Quigley HA, Johnson GJ. The definition and classification of glaucoma in prevalence surveys. Br J Ophthalmol 2002; 86(2):238-42. https://doi.org/10.1136/bjo.86.2.238

13. Zhang X, Wang W, Aung T, Jonas JB, Wang N. Choroidal physiology and primary angle closure disease. Surv Ophthalmol 2015; 60(6): 547-556. https://doi.org/10.1016/j.survophthal.2015.06.005

14. Kurysheva N.I., Boyarinceva M.A., Fomin A.V. Choroidal thickness in primary angle-closure glaucoma: the results of Measurement by Means of Optical Coherence Tomography. Ophthalmology in Russia 2013; 10(4):26-31. (In Russ.) https://doi.org/10.18008/1816-5095-2013-4-26-31

15. Kurysheva N.I., Sharova G.A. The Role of Optical Coherence Tomography in the Diagnosis of Angle Closed Diseases of the Anterior Chamber. Part 1: Visualization of the Anterior Segment of the Eye. Ophthalmology in Russia 2021; 18(2):208-215. (In Russ.) https://doi.org/10.18008/1816-5095-2021-2-208-215

16. Kurysheva N.I., Sharova G.A. The Role of Optical Coherence Tomography in the Diagnosis of Angle Closed Diseases of the Anterior Chamber. Part 2: Visualization of the Posterior Segment of the Eye. Ophthalmology in Russia 2021; 18(3):381-388. (In Russ.) https://doi.org/10.18008/1816-5095-2021-3-381-388

17. Zhou M, Wang W, Ding X, et al. Choroidal thickness in fellow eyes of patients with acute primary angle-closure measured by enhanced depth imaging spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2013; 54(3):1971-1978. https://doi.org/10.1167/iovs.12-11090

18. Nguyen DT, Giocanti-Aurégan A, Benhatchi N, et al. Increased choroidal thickness in primary angle closure measured by swept-source optical coherence tomography in Caucasian population. Int Ophthalmol 2020; 40(1):195-203. https://doi.org/10.1007/s10792-019-01171-z

19. Li F, Huo Y, Ma L, et al. Clinical observation of macular choroidal thickness in primary chronic angle-closure glaucoma. Int Ophthalmol. 2021; 41(12):4217-4223. https://doi.org/10.1007/s10792-021-01988-7

20. Zhou M, Wang W, Huang W, et al. Is increased choroidal thickness association with primary angle closure? Acta Ophthalmol. 2014; 92(7):e514-e520. https://doi.org/10.1111/aos.12403

21. Song WK, Sung KR, Shin JW, Kwon J. Effects of Choroidal Thickness on Refractive Outcome Following Cataract Surgery in Primary Angle Closure. Korean J Ophthalmol 2018; 32(5):382-390. https://doi.org/10.3341/kjo.2017.0129

22. Huang W, Li X, Gao X, Zhang X. The anterior and posterior biometric characteristics in primary angle-closure disease: Data based on anterior segment optical coherence tomography and swept-source optical coherence tomography. Indian J Ophthalmol 2021; 69(4):865-870. https://doi.org/10.4103/ijo.IJO_936_20

23. Zhang C, Tatham AJ, Medeiros FA, Zangwill LM, Yang Z, Weinreb RN. Assessment of choroidal thickness in healthy and glaucomatous eyes using swept source optical coherence tomography. PLoS One. 2014; 9(10):e109683. https://doi.org/10.1371/journal.pone.0109683

24. Wei WB, Xu L, Jonas JB, et al. Subfoveal choroidal thickness: the Beijing Eye Study. Ophthalmology 2013; 120(1):175-180. https://doi.org/10.1016/j.ophtha.2012.07.048

25. Huang W, Gao X, Li X, et al. Anterior and posterior ocular biometry in healthy Chinese subjects: data based on AS-OCT and SS-OCT. PLoS One. 2015; 10(3):e0121740. https://doi:10.1371/journal.pone.0121740

26. Nongpiur ME, He M, Amerasinghe N, et al. Lens vault, thickness, and position in Chinese subjects with angle closure. Ophthalmology 2011; 118(3):474-479. https://doi.org/10.1016/j.ophtha.2010.07.025

27. Tan GS, He M, Zhao W, Sakata LM, Li J, Nongpiur ME, Lavanya R, Friedman DS, Aung T. Determinants of lens vault and association with narrow angles in patients from Singapore. Am J Ophthalmol 2012; 154(1):39-46. https://doi.org/10.1016/j.ajo.2012.01.015

28. Liu YM, Hu D, Zhou LF, et al. Associations of lens thickness and axial length with outcomes of laser peripheral iridotomy. Int J Ophthalmol 2021; 14(5):714-718. https://doi.org/10.18240/ijo.2021.05.11

29. Ang BC, Nongpiur ME, Aung T, Mizoguchi T, Ozaki M. Changes in Japanese eyes after laser peripheral iridotomy: an anterior segment optical coherence tomography study. Clin Exp Ophthalmol 2016; 44(3):159-165. https://doi.org/10.1111/ceo.12673

30. Gupta B, Angmo D, Yadav S, Dada T, Gupta V, Sihota R. Quantification of Iridotrabecular Contact in Primary Angle-Closure Disease. J Glaucoma 2020; 29(8):681-688. https://doi.org/10.1097/IJG.0000000000001572

31. Nongpiur ME, Gong T, Lee HK, et al. Subgrouping of primary angleclosure suspects based on anterior segment optical coherence tomography parameters. Ophthalmology 2013; 120(12):2525-2531. https://doi.org/10.1016/j.ophtha.2013.05.028

32. Koh V, Keshtkaran MR, Hernstadt D, Aquino MCD, Chew PT, Sng C. Predicting the outcome of laser peripheral iridotomy for primary angle closure suspect eyes using anterior segment optical coherence tomography. Acta Ophthalmol 2019; 97(1):e57-e63. https://doi.org/10.1111/aos.13822

33. Song MK, Sung KR, Shin JW, Jo YH, Won HJ. Glaucomatous Progression After Lens Extraction in Primary Angle Closure Disease Spectrum. J Glaucoma 2020; 29(8):711-717. https://doi.org/10.1097/IJG.0000000000001537

34. Chan PP, Tang FY, Leung DY, Lam TC, Baig N, Tham CC. Ten-Year Clinical Outcomes of Acute Primary Angle Closure Randomized to Receive Early Phacoemulsification Versus Laser Peripheral Iridotomy. J Glaucoma 2021; 30(4):332-339. https://doi.org/10.1097/IJG.0000000000001799

35. Sorokin E.L., Marchenko A.N., Danilov O.V. Role and clinical value of phacomorphic component in formation of primary closed-angle glaucoma in case of a thickened lens form (Towards a problem of genesis of closed-angle glaucoma). Report 1. Fyodorov Journal of Ophthalmic Surgery 2014; 1:53-59. (In Russ.) https://doi.org/10.18008/1816-5095-2013-4-26-31


Review

For citations:


Kurysheva N.I., Sharova G.A., Belikova E.I. Studying the role of the choroid and lens in the development of primary anterior chamber angle closure. National Journal glaucoma. 2022;21(1):3-13. (In Russ.) https://doi.org/10.53432/2078-4104-2022-21-1-3-13

Views: 532


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)