Choroidal caverns in a patient with glaucoma (case study)
https://doi.org/10.53432/2078-4104-2022-21-1-37-44
Abstract
The article describes a clinical case of the formation of a choroidal cavern (CC) in a patient with glaucoma. CC are associated with degenerative diseases of the retina, which is likely associated with dysfunction of the choriocapillaries and impaired retinal supply. Most often, СС are the outcome of pachychoroidal conditions and age-related macular degeneration. Patient D., 63 years old, with previously diagnosed primary open-angled glaucoma in the right eye, complained of a gradual decrease in visual acuity in that eye for several years. According to the examination, the cause of vision acuity decrease was determined as partial atrophy of the retinal layers associated with CC in the superior nasal part of the perifovea and fovea. Presumably, based on signs of a pachychoroidal state in both eyes of the patient, the formed CC is the outcome of chronic central serous chorioretinopathy: focal thickening of the choroid, vasodilatation of the Haller's layer, thinning of the choriocapillaris layer, the presence of pachychoroidal pigment epitheliopathy in the left eye. CC is the marker of choriocapillary blood flow deficiency, which is an unfavorable prognostic factor for the development of glaucoma — proved by glaucoma optic neuropathy being more advanced in the eye with CC compared to the contralateral eye.
About the Authors
N. I. KuryshevaRussian Federation
Doc. Sci. (Med.), Professor, Head of the Academic Department of Ophthalmology, Head of the Consultative and Diagnostic Department
46 Zhivopisnaya St., building 8, Moscow, 123098
15 Gamalei St., Moscow, 123098
O. A. Pererva
Russian Federation
Ophthalmologist, Assistant Professor at the Academic Department of Ophthalmology
46 Zhivopisnaya St., building 8, Moscow, 123098
15 Gamalei St., Moscow, 123098
V. Yu. Kim
Russian Federation
Ophthalmologist, Assistant Professor at the Academic Department of Ophthalmology
46 Zhivopisnaya St., building 8, Moscow, 123098
15 Gamalei St., Moscow, 123098
V. E. Kim
Russian Federation
ophthalmology resident
15 Gamalei St., Moscow, 123098
References
1. Sakurada Y., Leong B.C.S., Parikh R., Fragiotta S., Freund K.B. Association between choroidal caverns and choroidal vascular hyperpermeability in eyes with pachychoroid diseases. Retina 2018; 38(10):1977-1983. https://doi.org/10.1097/IAE.0000000000002294
2. Chung H., Byeon S.H., Freund K.B. Focal choroidal excavation and its association with pachychoroid spectrum disorders: a review of the literature and multimodal imaging findings. Retina 2017; 37(2):199-221. https://doi.org/10.1097/IAE.0000000000001345
3. Carnevali A., Sacconi R., Corbelli E., Querques L., Bandello F., Querques G. Choroidal caverns: a previously unreported optical coherence tomography finding in best vitelliform dystrophy. Ophthalmic Surg Lasers Imaging Retina 2018; 49(4):284-287. https://doi.org/10.3928/23258160-20180329-14
4. Kurisheva N.I. Glaznaya gemoperfuziya i glaukoma [Eye hemoperfusion and glaucoma]. Moscow, Greenlight Publ., 2014. 128 p.
5. Querques G., Costanzo E., Miere A., Capuano V., Souied E.H. Choroidal caverns: a novel optical coherence tomography finding in geographic atrophy. Invest Ophthalmol Vis Sci 2016; 57(6):2578-82. https://doi.org/10.1167/iovs.16-19083
6. Ayachit A., Joshi S., Kathyayini S.V., Ayachit G. Choroidal caverns in pachychoroid neovasculopathy. Indian J Ophthalmol 2020; 68(1): 199-200. https://doi.org/10.4103/ijo.IJO_395_19
7. Dinc U.A., Tatlipinar S., Yenerel M., Görgün E., Ciftci F. Fundus autofluorescence in acute and chronic central serous chorioretinopathy. Clin Exp Optom 2011; 94(5):452-457. https://doi.org/10.1111/j.1444-0938.2011.00598.x
8. Călin E.F., Popescu S.I.P., Cernat C.C.C., Patoni C., Popescu M.-N., Mușat O. Lipofuscin: a key compound in ophthalmic practice. Rom J Ophthalmol 2021; 65(2):109-113. https://doi.org/10.22336/rjo.2021.23
9. Cheung C.M.G., Lee W.K., Koizumi H., Dansingani K., Lai T.Y.Y., Freund K.B. Pachychoroid disease. Eye (Lond) 2019; 33(1):14-33. https://doi.org/10.1038/s41433-018-0158-4
10. Dansingani K.K., Balaratnasingam C., Naysan J., Freund K.B. En face imaging of pachychoroid spectrum disorders with Swept-Source Optical Coherence Tomography. Retina 2016; 36(3):499-516. https://doi.org/10.1097/iae.0000000000000742
11. Savastano M.C., Dansingani K.K., Rispoli M., Virgili G., Savastano A., Freund K. B., Lumbroso B. Classification of haller vessel arrangements in acute and chronic central serous chorioretinopathy imaged with en face Optical Coherence Tomography. Retina 2018; 38(6):1211-1215. https://doi.org/10.1097/IAE.0000000000001678
12. Baek J., Kook L., Lee W.K. Choriocapillaris flow impairments in association with pachyvessel in early stages of pachychoroid. Sci Rep 2019; 9(1):1-6. https://doi.org/https://doi.org/10.1038/s41598-019-42052-w
13. Gal-Or O., Dansingani K.K., Sebrow D., Dolz-Marco R., Freund K.B. Inner choroidal flow signal attenuation in pachychoroid disease: Optical Coherence Tomography Angiography. Retina 2018; 38(10):1. https://doi.org/10.1097/iae.0000000000002051
14. Ersoz M.G., Arf S., Hocaoglu M., Muslubas I.S., Karacorlu M. Indocyanine green angiography of pachychoroid pigment epitheliopathy. Retina 2018; 38(9):1668-1674. https://doi.org/10.1097/IAE.0000000000001773
15. Kurysheva N.I., Ardzhevnishvili T.D., Fomin A.V. The choroid and glaucoma. Natsional'nyi zhurnal glaukoma 2014; 13(1):60-67
16. Kurysheva N.I., Lepeshkina L.V., Shatalova E.O. Comparative study of factors associated with the progression of primary open-angle glaucoma and primary angle-closure glaucoma. Bulletin of Ophthalmology 2020; 136(2):64-72. https://doi.org/10.17116/oftalma202013602164
17. Lee E.J., Kim T.W., Lee S.H., Kim J.A. Underlying microstructure of parapapillary deep-layer capillary dropout identified by optical coherence tomography angiography. Invest Ophthalmol Vis Sci 2017; 58(3):1621-1627. https://doi.org/10.1167/iovs.17-21440
18. Lee E.J., Lee S.H., Kim J.A., Kim T.W. Parapapillary deep-layer microvasculature dropout in glaucoma: topographic association with glaucomatous damage. Invest Ophthalmol Vis Sci 2017; 58(7):3004-3010. https://doi.org/10.1167/iovs.17-21918
19. Pradhan Z.S., Rao H.L., Dixit S., Sreenivasaiah S., et al. Choroidal microvascular dropout in pseudoexfoliation glaucoma. Invest Ophthalmol Vis Sci 2019; 60(6):2146-2151. https://doi.org/10.1167/iovs.19-26844.
20. Jo Y.H., Sung K.R., Shin J.W. Comparison of peripapillary choroidal microvasculature dropout in primary open-angle, primary angle-closure, and pseudoexfoliation glaucoma. J Glaucoma 2020; 29(12):1152-1157. https://doi.org/10.1097/IJG.0000000000001650
21. Abdelmassih Y., Azar G., Bonnin S., et al. COVID-19 associated choroidopathy. J Clin Med 2021; 10:4686. https://doi.org/10.3390/jcm10204686
Review
For citations:
Kurysheva N.I., Pererva O.A., Kim V.Yu., Kim V.E. Choroidal caverns in a patient with glaucoma (case study). National Journal glaucoma. 2022;21(1):37-44. (In Russ.) https://doi.org/10.53432/2078-4104-2022-21-1-37-44