Preview

National Journal glaucoma

Advanced search

A clinical study of hydrodynamic parameters of the eye in primary open-angle glaucoma and low-tension glaucoma

https://doi.org/10.53432/2078-4104-2022-21-3-3-9

Abstract

   PURPOSE. To quantify the outflow of intraocular fluid along various pathways depending on the stage of the disease in typical primary open-angle glaucoma (POAG) and low-tension glaucoma (LTG) cases, and compare the obtained results.
   METHODS.  This study involved 30 patients (57 eyes) with POAG at various stages, aged 58 to 80 years old (mean age 67 ± 8.0 years). The comparison group included 33 patients (62 eyes) with LTG at various stages aged 51 to 80 years old (mean age 69 ± 10.4 years). All subjects had no history of previous laser or surgical interventions on the studied eye. The controls were 15 clinically healthy individuals (30 eyes) of the same age group. On the first day, electronic tonography was performed using tonograph TNC- 100-S with a 4-minute recording of the curve. On the next day, tonography was per-
formed with simultaneous blockade of the  drainage outflow pathway using a perilimbal vacuum — compression ring according to the method by Prof. N.V. Kosykh.
   RESULTS. The overall ease of outflow coefficient (EOC) in POAG has a pronounced tendency to decrease with stage advancement. Its decrease in the II and III stages of the disease is 35 % and 30 %, respectively. The EOC for the uveoscleral pathway with POAG decreases in the II and III stages of the disease and amounts to 33.3 % and 25 %, respectively. The ratio of uveoscleral outflow in POAG increases by 3.3 % and 6.5 % in the II and III stages, respectively. With stage I and II LTG, this indicator is stable and remains at a fairly high level, and in the III stage it decreases by 33.3 % compared to stage II. The ratio of uveoscleral out-flow in LTG increases by 21 % in the II stage and by 11 % in the III stage of the disease.
   CONCLUSION. The rate of fluid outflow along the uveoscleral pathway is higher in LTG than in POAG. The ratio of uveoscleral outflow to overall outflow is greater in LTG in comparison with POAG. In this respect, it can be concluded that preservation of IOP within the limits of the average norm in LTG may be associated with a more pronounced function of the uveoscleral outflow pathway.

About the Authors

E. A. Stepanova
Omsk State Medical University
Russian Federation

Cand. Sci. (Med.), Associate Professor

Academic Department of Ophthalmology

644099

12 Lenina St.

Omsk



O. I. Lebedev
Omsk State Medical University
Russian Federation

Dr. Sci. (Med.), Professor, Head of the Department

Academic Department of Ophthalmology

644099

12 Lenina St.

Omsk



References

1. Natsional'noe rukovodstvo po glaukome: dlya praktikuyushchikh vrachei [National Guidelines to glaucoma for practiconers]. Edited by Egorov E. A., Erichev V. P. 4th edition, corrected and enhanced. Moscow, GEOTAR-Media Publ., 2019. 384 p.

2. Kurysheva N. I. Mechanisms of reduction of visual functions in primary open-angle glaucoma and ways of their prevention. Abstract of Doctor of Med. Sc. thesis. Moscow, 2021. 46 p.

3. Nesterov A. P., Banin V. V., Simonova S. V. Role of ciliary muscle in ocular physiology and disease. Vestnik oftal’mologii 1999; 115 (2): 13-15.

4. Nesterov A. P. Pathogenesis and problems of pathogenetic treatment of glaucoma. RMJ Clinical Ophthalmology 2003; 4 (2): 47-48.

5. H. Oku, T. Sugigama, S. Kojima et al. Experimental optic cup enlargement caused by endotelin–1-included chronic optic nerve head ischemia. Surv Ophthalmol 1999; 44 (1): 74-84. https://doi.org/10.1016/S0039-6257(99)00068-5

6. Johnson E. C., Deppmeier L. M., Wentzein S. K. et al. Chronology of optic nerve head and retinal responses elevated intraocular pressure. Invest Ophthalmol Vis Sci 2000; 41 (2): 431-442.

7. Guo L., Moss S. E., Alexander R. A. et al. Retinal ganglion cell apoptosis in glaucoma is related to intraocular pressure and IOP-induced effects on extracellular matrix. Invest Ophthalmol Vis Sci 2005; 46 (1): 175-182. https://doi.org/10.1167/iovs.04-0832

8. Anderson D. R. Introductory comments on blood flow autoregulation in optic nerve head and vascular risk factors in glaucoma. Surv Ophthalmol 1999; 43 (Suppl. 1): 5-9. https://doi.org/10.1097/00061198-199712000-00012

9. Orgul S., Cioffi G. A., Wilson D. J. et al. An endothelin-1 induced model of optic nerve ischemia in the rabbit. Invest Ophthalmol Vis Sci 1996; 37 (9): 1860-1869.

10. Nathanson S. A., Mckee M. Identification of an extensive system of nitric oxide — producing cells in the ciliary musle and out-flow pathway of the human eye. Invest Ophthalmol Vis Sci 1995; 36 (9): 1765-1773.

11. Meyer P., Flammer J., Lusher T. F. Local action of the rennin angiotensin system in the porcine ophthalmic circulation: effect of ACF-inhibitor and angiotensin receptor antagonist. Invest Ophthalmol Vis Sci 1995; 36 (3): 555-562.

12. Vorverk C., Gorla M., Dreyer E. An experimental basis for implication excitotoxicity in glaucomatous optic neuropathy. Surv Ophthalmol 1999; 43 (1): 48-50. https://doi.org/10.1016/s0039-6257(99)00017-x

13. Girard M. J., Suh K. F., Bottlang М., Burgoyne C. F., Downs J. C. Biomechanical changes in the sclera of monkey eyes exposed to chronic IOP. Invest Ophthalmol Vis Sci 2011; 52 (8): 5656–5669. https://doi.org/10.1167/iovs.10-6927

14. Schmidl D., Garhofer G., Schmetterer L. The complex interaction between ocular perfusion pressure and ocular blood flow — relevance for glaucoma. Exp Eye Res 2011; 93 (2): 141-155. https://doi.org/10.1016/j.exer.2010.09.002.

15. Costa V. P., Harris A., Anderson D., Stodtmeister R., Cremasco F., Kergoat H., Lovasik J., Stalmans I., Zeitz O., Lanzl I., Gugleta K., Schmetterer L. Ocular perfusion pressure in glaucoma. Acta Ophthalmol 2014: 92:e252-e266. https://doi.org/10.1111/aos.12298

16. Izzotti A., Sacca S. C. et al. Mitochondrial damage in the trabecular meshwork of patients with glaucoma. J Natl Med Assoc 2009; 101 (1): 46-50.

17. Nesterov, A. P. Glaukoma [Glaucoma]. Moscow, Meditsina Publ., 1995. 256 p.

18. Yücel Y. H., Johnston M. G., Ly T., Patel M., Drake B., Gümüş E., Fraenkl S. A., Moore S., Tobbia D., Armstrong D., Horvath E., Gupta N. Identification of lymphatics in the ciliary body of the human eye: A novel «uveolymphatic» outflow pathway. Exp Eye Res 2009; 89 (5): 810-819. https://doi.org/10.1016/j.exer.2009.08.010 22.

19. Birke K., Lütjen-Drecoll E., Kerjaschki D., Birke M. Expression of Pdpn and Other Lymphatic Markers in the Human Anterior Eye Segment. Invest Ophthalmol Vis Sci 2010; 51 (1): 344. https://doi.org/10.1167/iovs.08-3307

20. Krebs W, Krebs I. P. Ultrastructural Evidence for Lymphatic Capillaries in the Primate Choroid. Arch Ophthalmol 1988; 106 (11): 1615-1616. https://doi.org/10.1001/archopht.1988.01060140783055

21. Sugita A, Inokuchi T. Lymphatic sinus-like structures in choroid. Jpn J Ophthalmol 1992; 36 (4): 436-442.

22. De Stefano M, Mugnaini E. Fine structure of the choroidal coat of the avian eye. Vascularization, supporting tissue and innervation. Anat Embryol (Berl) 1997; 195 (5): 393-418. https://doi.org/10.1007/s004290050060

23. Xu H., Chen M., Reid D., Forrester J. LYVE-1 — Positive Macrophages Are Present in Normal Murine Eyes. Invest Ophthalmol Vis Sci 2007; 48 (5): 2162. https://doi.org/10.1167/iovs.06-0783

24. Schroedl F., Brehmer A., Neuhuber W., Kruse F., May C., Cursiefen C. The Normal Human Choroid Is Endowed with a Significant Number of Lymphatic Vessel Endothelial Hyaluronate Receptor 1 (LYVE-1) — Positive Macrophages. Invest Ophthalmol Vis Sci 2008; 49 (12): 5222. https://doi.org/10.1167/iovs.08-1721

25. Koina M. E., Baxter L., Adamson S. J., Arfuso F., Hu P., Madigan M. C., Chan-Ling T. Evidence for Lymphatics in the Developing and Adult Human Choroid. Invest Ophthalmol Vis Sci 2015; 56 (2): 1310-1327. https://doi.org/10.1167/iovs.14-15705

26. Chernykh V. V., Bgatova N. P. Lymphatic structures of the eye and uveolymphatic (metabolic) pathway of intraocular fluid outflow. P. 1. Natsional'nyi zhurnal glaucoma 2018; 17 (1): 3-13. URL: https://www.glaucomajournal.ru/jour/article/view/172

27. Chernykh V. V., Borodin Yu. I., Bgatova N. P., Trunov A. N., Khodjayev N. S., Nagovitsyna S. R., Eremina A. V., Konenkov V. I. The elements of intraocular fluid lymphatic outflow pathways in choroid in norm and in glaucoma patients. Ophthalmosurgery 2016; 3: 11-16. https://doi.org/10.25276/0235-4160-2016-3-11-17

28. Kosykh N. V. Uveoscleral outflow of intraocular fluid in primary glaucoma. Abstract of Cand. of Med. Sc. thesis. Omsk, 1982. 24 p.

29. Stepanova E. A. Clinical features of glaucoma with normal pressure. Abstract of Cand. of Med. Sc. thesis. Omsk, 2006. 28 p.

30. Lebedev O. I., Stolyarov G. M., Zolotarev A. V., Karlova E. V. A method of quantative clinical measurement of uveascleral outflow in human. Prakticheskaya meditsina 2012; 4-1 (59): 215-217.

31. Karlova E. V. Using of dynamic contour tonometry in uveoscleral out-flow measurements in glaucoma patients. Vestnik OGU 2013; 4 (153): 123-126.

32. Kalizhnikova E. A., Lebedev O. I., Stepanova E. A., Trofimova E. I. Changes in the topography of the anterior segment of the eye and uveoscleral outflow indicators in patients with primary glaucoma during cataract phacoemulsification. Natsional'nyi zhurnal glaucoma 2015; 14 (4): 21-28.


Review

For citations:


Stepanova E.A., Lebedev O.I. A clinical study of hydrodynamic parameters of the eye in primary open-angle glaucoma and low-tension glaucoma. National Journal glaucoma. 2022;21(3):3-9. (In Russ.) https://doi.org/10.53432/2078-4104-2022-21-3-3-9

Views: 546


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)