Preview

National Journal glaucoma

Advanced search

Factors in the development of refractory primary open-angle glaucoma (part 1)

https://doi.org/10.53432/2078-4104-2022-21-4-79-88

Abstract

Primary open-angle glaucoma (POAG) is one of the most significant medico-social problems in the modern society. The development of its refractoriness aggravates the pathological process and inevitably leads to blindness. Despite the fact that this form accounts for up  to  80%  of all glaucoma cases, the problem of POAG refractoriness has not been considered in sufficient detail in either Russian or foreign sources. The article presents an overview of the main ophthalmic factors that contribute to changes in various structures of the eyeball and accelerate the formation of refractory forms of POAG. One of the reasons for that is a genetic predisposition to the  development of POAG.  It is worth noting that in 60% of patients with    a family history of glaucoma, the risk of developing POAG increases by 10 times (among the first-degree relatives).

Additional factors in the development of the refractory form of POAG are the reactive syndrome and during laser surgery. It is important to emphasize that the risk of development and progression of POAG in patients with     a hereditary predisposition is much higher, while indicating a number of therapeutic measures may lead to drug resistance. Genotyping is a promising scientific and practical direction of research, allowing prediction of the pharmacological response to a particular drug and individual selection of the appropriate therapy according to the patient's genotype. This approach could help prevent a number of complications and improve the accuracy of disease prognosis.

About the Authors

N. E. Fomin
Mandryka Central Military Clinical Hospital; Pirogov State National Research Medical University
Russian Federation

Ophthalmologist, Mandryka Central Military Clinical Hospital; Assistant Professor at the Academic Department of Ophthalmology, Pirogov State National Research Medical University.

8A Bolshaya Olenya St., Moscow, 107014; 1 Ostrovityanova St., Moscow, 117997



A. V. Kuroyedov
Mandryka Central Military Clinical Hospital; Pirogov State National Research Medical University
Russian Federation

Dr. Sci. (Med.), Head of the Ophthalmology Сenter, Mandryka Central Military Clinical Hospital; Professor at the Academic Department of Ophthalmology, Pirogov State National Research Medical University.

8A Bolshaya Olenya St., Moscow, 107014; 1 Ostrovityanova St., Moscow, 117997



References

1. Eliseeva NV Assessment of clinical manifestations of primary open-angle glaucoma. Sovremennye trendy razvitiya nauki i tekhnologii. 2017; 1(3):28-30

2. Antonov A.A., Agadzhanyan T.M., Vitkov A.A. Hypotensive efficacy of bimatoprost in the treatment of primary open-angle glaucoma. Natsional’nyi zhurnal glaukoma 2019; 18(1):95-104. https://doi.org/10.17116/oftalma2018134051208

3. Zagidullina A.Sh. About the phenotypes of primary glaucoma. Meditsinskiy vestnik Bashkortostana 2015; 10(2):162-165.

4. Grzybowski A., Och M., Kanclerz P. et al. Primary open-angle glaucoma and vascular risk factors: a review of population based studies from 1990 to 2019. J Clin Med 2020; 9(3):761. https://doi.org/10.3390/jcm9030761

5. Posarelli C., Toro M.D., Rejdak R. et al. Safety and efficacy of second ahmed valve implant in refractory glaucoma. J Clin Med 2020; 9:2039. https://doi.org/10.3390/jcm9072039

6. Iraha S., Takihara Y., Urahashi Y. et al. Factors associated with the surgical outcomes of Baerveldt glaucoma implant for open-angle glaucoma, an age-related eye disease. Sci Rep 2022; 12:1359. https://doi.org/10.1038/s41598-021-04570-4

7. Zhuravleva A.N., Kiseleva O.A., Kirillova M.O. Personalized medicine in solving the problem of glaucoma. Russian ophthalmological journal 2019; 12(3):95-100. https://doi.org/10.21516/2072-0076-2019-12-3-95-100.

8. Kirillova M.O., Zhuravleva A.N., Marakhonov A.V. Polymorphisms of genes associated with connective tissue remodeling as markers of preclinical diagnosis of primary open-angle glaucoma in patients with hereditary predisposition. Medical genetics 2021; 20(5):26-33. https://doi.org/10.25557/2073-7998.2021.05.26-33

9. Zhuravleva A.N., Satybaldyev A.M., Zinchenko R.A. Analysis of associations of undifferentiated connective tissue dysplasia with the development of primary open-angle glaucoma. Clinical and genetic aspects. Vestnik oftal’mologii 2021;137(6):74 80. https://doi.org/10.17116/oftalma202113706174

10. Liu Y., Allingham R.R. Major review: Molecular genetics of primary open-angle glaucoma. Exp Eye Res 2017; 160:62-84. https://doi.org/10.1016/j.exer.2017.05.002

11. Dismuke W.M., Challa P., Navarro I. et al. Human aqueous humor exosomes. Exp Eye 2015; (132): 73-77. https://doi.org/10.1016/j.exer.2015.01.019

12. Heo J.M., Ordureau A., Paulo J.A. et al. The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol Cell 2015; 60: 7-20. https://doi.org/10.1016/j.molcel.2015.08.016

13. Gu X., Reagan A.M., McClellan M.E. et al: Caveolins and caveolae in ocular physiology and pathophysiology. Prog Retin Eye Res 2017; 56:84-106. https://doi.org/10.1016/j.preteyeres.2016.09.005

14. Chen Y., Hughes G., Chen X. et al. Genetic variants associated with different risks for high tension glaucoma and normal tension glaucoma in a Chinese population. Invest Ophthalmol Vis Sci 2015; 56:2595-2600. https://doi.org/10.1167/iovs.14-16269

15. Scheetz T.E., Faga B., Ortega L. et al. Glaucoma risk alleles in the ocular hypertension treatment study. Ophthalmology 2016; 123:2527-2536. https://doi.org/10.1016/j.ophtha.2016.08.036

16. Springelkamp H., Iglesias A.I., Mishra A. et al. NEIGHBORHOOD Consortium: New insights into the genetics of primary open-angle glaucoma based on meta-analyses of intraocular pressure and optic disc characteristics. Hum Mol Genet 2017; 26:438-453. https://doi.org/10.1093/hmg/ddw399

17. Khawaja A.P., Viswanathan A.C. Are we ready for genetic testing for primary open-angle glaucoma? Eye (Lond) 2018; 32:877-883. https://doi.org/10.1038/s41433-017-0011-1

18. Joe M.K., Lieberman R.L., Nakaya N. et al. Myocilin Regulates Metalloprotease 2 Activity Through Interaction With TIMP3. Investigative ophthalmology & visual science 2017; 58:5308-5318. https://doi.org/https://doi.org/10.1167/iovs.16-20336.

19. Kaplan N. Single-cell RNA transcriptome helps define the limbal/corneal epithelial stem/early transit amplifying cells and how autophagy affects this population. Invest Ophthalmol Vis Sci 2019; 60(10):3570-3583. https://doi.org/10.1167/iovs.19-27656

20. Ho L.T.Y. Role of the autotaxin-lysophosphatidic acid axis in glaucoma, aqueous humor drainage and fibrogenic activity. Biochim Biophys Acta Mol Basis Dis 2020; 1866(1);165560. https://doi.org/10.1016/j.bbadis.2019.165560

21. Rakhmanov V.V. Mutations and polymorphisms of myocilin and optineurin genes as genetic risk factors for the development of primary open-angle glaucoma. Genetics 2005; 41(11):1567-1574

22. Sears N.C., Boese E.A., Miller M.A. et al. Mendelian genes in primary open angle glaucoma. Exp Eye Res 2019; 186:107702. https://doi.org/10.1038/eye.2011.97

23. Monemi S., Spaeth G., DaSilva A. et al. Identification of a novel adultonset primary open-angle glaucoma (POAG) gene on 5q22.1. Hum Mol Genet 2005; 14: 725-733.

24. Abu-Amero K., Kondkar A.A., Chalam K.V. An updated review on the genetics of primary open-angle glaucoma. Int J Mol Sci 2015; 16:28886-28911. https://doi.org/10.3390/ijms161226135.

25. Rezaie Т., Child A., Hitchings R. et al. Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science 2002; 295:1077-1079. https://doi.org/10.1126/science.1066901

26. Hauser M.A., Allingham R.R., Linkroum K., et al. Invest Ophthalmol Vis Sci 2006; 47(6):2542-2546.

27. Reis L.M. Whole exome sequencing identifies multiple diagnoses in congenital glaucoma with systemic anomalies. Clin Genet 2016; 90(4):378-382 https://doi.org/10.1111/cge.12816.

28. Shiga Y. Genetic analysis of Japanese primary open-angle glaucoma patients and clinical characterization of risk alleles near CDKN2B-AS1, SIX6 and GAS7. PloS One 2017; 12:e0186678. https://doi.org/10.1371/journal.pone.0186678.

29. Youngblood H., Hauser M.A., Liu Y. Update on the genetics of primary open-angle glaucoma. Exp. Eye Res 2019; 188:107795. https://doi.org/10.1016/j.exer.2019.107795.

30. Osborne N.N., Nunez-Alvarez C., Joglar B. Glaucoma: Focus on mitochondria in relation to pathogenesis and neuroprotection. Eur J Pharm 2016; 787:127-133. https://doi.org/10.1016/j.ejphar.2016.04.032.

31. Bailey J.N., Loomis S.J., Kang J.H., et al. ANZRAG Consortium: Genome-wide association analysis identifies TXNRD2, ATXN2 and FOXC1 as susceptibility loci for primary open-angle glaucoma. Nat Genet 2016; 48(2):189-194. https://doi.org/10.1038/ng.3482

32. O’Gorman L., Cree A.J., Ward D. et al. Comprehensive sequencing of the myocilin gene in a selected cohort of severe primary open-angle glaucoma patients. Sci Rep 2019; 9:3100. https://doi.org/10.1038/s41598-019-38760-y

33. Denisyuk L.I. Distribution of genotypes and alleles of the polymorphic locus PRO72ARG (RS1042522) of the TP53 gene in primary open-angle glaucoma and association with the development of the disease. Mezhdunarodniy nauchno-issledovatelskiy zhurnal 2017; 1-1(5): 111-113.

34. Lin H.J., Chen W.L, Chen T.H. et al. Vascular endothelial growth factor-460 C/T BstUI gene polymorphism is associated with primary open-angle glaucoma. J Bio Medicine 2014; 4:20-23.

35. Kukes V.G., Sychev D.A. Klinicheskaya oftalmologiya [Clinical Pharmacology]; Мoscow, Geotar-Media Publ., 2015.

36. Chan S.W., Chu T.T.W., Ho C.S. et al. Influence of CYP2D6 and CYP3A5 Polymorphisms on the Pharmacokinetics and Pharmacodynamics of Bisoprolol in Hypertensive Chinese Patients. Frontiers in Medicine 2021; 8. https://doi.org/10.3389/fmed.2021.683498

37. Moshetova L.K., Soshina M.M., Turkina K.I. Applied pharmacogenetics for personalizing the management of patients with glaucoma. Pharmacogenetics and Pharmacogenomics 2020; 1:26-34. https://doi.org/10.37489 / 2588-0527-2020-1-26-34.

38. Levin M.C., Marullo S., Muntaner O. et al. The myocardium protective Gly49 variant of the beta 1 adrenergic receptor exhibits constitutive activity and increased desentization and down regulation. J Biol Chem 2002; 277:30429-35. https://doi.org/ 10.1074/jbc.M200681200

39. McLaren N., Reed D.M., Musch D.C. et al. Evaluation of the beta-2 adrenergic receptor gene as a candidate glaucoma gene in 2 ancestral populations. Arch Ophthalmol 2007; 125(1):105-111. https://doi.org/ 10.1001/archopht.125.1.105

40. Camras C.B., Hedman K., US Latanoprost Study Group. Rate of response to latanoprost or timolol in patients with ocular hypertension or glaucoma. J Glaucoma 2003; 12(6):466-469. https://doi.org/10.1097/00061198-200312000-00004

41. Nieminem T., Uusitalo H., Maenpaa J. et al. Polymorphisms of genes CYP2D6, ADRB1, and GNAS1 in pharmacokinetics and systemic effects of ophthalmic timolol. A pilot study. Eur J Pharmacol 2005; 61:811-819. https://doi.org/10.1007/s00228-005-0052-4

42. Yang, Y., Wu, K., Yuan, H. et al. Cytochrome oxidase 2D6 gene polymorphism in primary open-angle glaucoma with various effects to ophthalmic timolol. J Ocul Pharmacol Ther 2009; 25:163-171. https://doi.org/10.1089/jop.2008.0028

43. Levin M.C., Marullo S., Muntaner O. et al. The myocardium – protective Gly49 variant of the beta 1 – adrenergic receptor exhibits constitutive activity and increased desentization and down – regulation. J BiolChem 2002; 277:30429-30435. https://doi.org/10.1074/jbc.M200681200

44. Nieminem T., Uusitalo H., Maenpaa J. et al. Polymorphisms of genes CYP2D6, ADRB1, and GNAS1 in pharmacokinetics and systemic effects of ophthalmic timolol. A pilot study. Eur J Pharmacol 2005; 61:811-819. https://doi.org/10.1007/s00228-005-0052-4

45. Liggett S.B. Pharmacogenomics of beta – 1 and beta – 2 adrenergic receptors. Pharmacology 2000; 61:167-173. https://doi.org/10.1159/000028397

46. McCarty C.A, Burmester J.K., Mukesh B.N. et al. Intraocular pressure response to topical beta-blockers associated with an ADRB2 single nucleotide polymorphism. Arch Ophthalmol 2008; 126(7):959-963. https://doi.org/10.1001/archopht.126.7.959

47. Camras C.B., Hedman K., US Latanoprost Study Group. Rate of response to latanoprost or timolol in patients with ocular hypertension or glaucoma. J Glaucoma 2003;12(6):466-469. https://doi.org/10.1097/00061198-200312000-00004

48. Scherer W.J. A retrospective review of non – responders to latanoprost. J Ocul Pharmacol Ther 2002; 18(3):287-291. https://doi.org/10.1089/108076802760116205

49. Sakurai M., Higashide T., Takahashi M., Sugiyama K. Association between genetic polymorphisms of the prostaglandin F2a receptor gene and response to latanoprost. Ophthalmology 2007; 114:1039-1045. https://doi.org/10.1016/j.ophtha.2007.03.025

50. Moshetova L.K., Soshina M.M., Sychev D.A., Turkina K.I. Pharmacogenetics of timolol. Vestnik oftal’mologii 2019; 135(3):137-143. https://doi.org/10.17116/oftalma2019135031137

51. Moshetova L.K., Soshina M.M., Sychev D.A., Turkina K.I. et al. Polypharmacy in ophthalmic practice. Vrach 2018; 29(7):40-43. https://doi.org/10.29296/25877305-2018-07-08.

52. Fabrikantov O.L., Nikolashin S.I., Pirogova E.S. Refractory glaucoma surgery – indications, complications, outcomes. Medicine 2016; 21(1):204-207.

53. Zakharova E.K., Poskachina T.R. Results of surgical treatment of neovascular glaucoma. Meditsinskiy vestnik Bashkortostana 2015; 10(2): 33-35.

54. Garg A., Gazzard G. Selective laser trabeculoplasty: past, present, and future. Eye 2018; 32(5):863-876. https://doi.org/10.1038/eye.2017.273

55. Preda M.A., Popa G., Karancsi O.L. et al. Effectiveness of subconjunctival bevacizumab associated with a laser-based procedure in the treatment of neovascular glaucoma. Farmacia 2018; 66(4):621-626. https://doi.org/10.31925/farmacia.2018.4.10

56. Frolov M.A, Kumar V., Shepelova I.E. Comparative analysis of the results of hypotensive surgery with the introduction of a metal drainage into the corner of the anterior chamber and standard sinustrabeculectomy in the surgical treatment of refractory glaucoma 134. Natsional’nyi zhurnal glaukoma 2015; 1:52-60. https://doi.org/10.14341/DM2003414-16

57. Schroed F., Kaser-Eichberger A., Schlereth S.L. et al. Consensus statement on the immunohistochemical detection of ocular lymphatic vessels. Invest Ophthalmol Vis Sci 2014; 55(10):6440-6442. https://doi.org/10.1167/iovs.14-15638.

58. Schroed F., Kaser-Eichberger A., Trost A. et al. Distribution of galanin receptors in the human eye. Exp Eye Res 2015; 138:42-51. https://doi.org/10.1016/2015.06.024.

59. Rodgers C.D., Lukowski Z.L., Min J. et al. Modulating Ocular Scarring in Glaucoma Filtration Surgery Using the Epigenetic Adjunct Suberoylanilide Hydroxamic Acid. J Curr Glaucoma Pract 2019; 13(1):37-41. https://doi.org/10.5005/jp-journals-10078-1246

60. Wong M.O., Lee J.W., Choy B.N. et al. Systematic review and metaanalysis on the efficacy of selective laser trabeculoplasty in open-angle glaucoma. Surv Ophthalmol 2015; 60(1):36-50. https://doi.org/10.1016/j.survophthal.2014.06.006

61. Harasymowycz P.J., Papamatheakis D.G., Latina M. et al. Selective laser trabeculoplasty (SLT) complicated by intraocular pressure elevation in eyes with heavily pigmented trabecular meshworks. Am J Ophthalmol 2005; 139(6):1110-1113. https://doi.org/10.1016/j.ajo.2004.11.038

62. Zhang L., Weizer J.S., Musch D.C. Perioperative medications for preventing temporarily increased intraocular pressure after laser trabeculoplasty. Cochrane Database Syst Rev. 2017; 2(2):CD010746. https://doi.org/10.1002/14651858.CD010746.pub2

63. SooHoo J.R., Seibold L.K., Ammar D.A., Kahook M.Y. «Ultrastructural changes in human trabecular meshwork tissue after laser trabeculoplasty». Journal of Ophthalmology 2015; 2015: 5. https://doi.org/10.1155/2015/476138

64. Gupta S., Chaurasia A.K., Chawla R. Long-term outcomes of glaucoma drainage devices for glaucoma post-vitreoretinal surgery with silicone oil insertion: a prospective evaluation. Graefes Arch Clin Exp Ophthalmol 2016; 254(12):2449-2454. https://doi.org/10.1007/s00417-016-3469-9

65. Kim J.W. Effect of Nitric Oxide on the Expression of Matrix Metalloproteinase and Its Association with Migration of Cultured Trabecular Meshwork Cells. Korean J Ophthalmol 2016;30(1):66-75. https://doi.org/10.3341/kjo.2016.30.1.66

66. Coudrillier B., Pijanka J.K., Jefferys J.L., et al. Glaucoma-related changes in the mechanical properties and collagen micro-architecture of the human sclera. PloS ONE 2015; 10(7):e0131396. https://doi.org/10.1371/journal.pone.0131396

67. Sokolov V.A., Levanova O.N., Nikiforov A.A. Matrix metalloproteinase-9 as a biomarker of primary open-angle glaucoma. Rossiyskiy medico-biologicheskiy vestnik imeni Pavlova 2013; 4.

68. Rukina D.A., Dogadova L.P., Markelova E.V. et al. Immunological aspects of the pathogenesis of primary open-angle glaucoma. RMJ Clinical Ophthalmology 2011; 12(4):162-165.

69. Zhuravleva A.N. The scleral component in the glaucomatous process. Glaucoma: theories, trends, technologies. HRT-club of Russia 2009; 195-200.

70. Zhuravleva AN, Neroev VV, Teplinskaya LE, et al. Study of tissue and plasma fibronectin in primary open-angle glaucoma. Ophthalmology in Russia 2009; 3:15-19.

71. Alekseev I.B., Strakhov V.V., Melnikova N.V., Popova A.A. Changes in the fibrous tunic of the eye in patients with newly diagnosed primary open-angle glaucoma. Natsional’nyi zhurnal glaukoma 2016; 15(1):13-24.

72. Avetisov S.E., Bubnova I.A., Petrov S.Yu., et al. Features of biomechanical properties of the fibrous membrane of the eye in patients with primary open-angle glaucoma. Glaukoma 2012; 4:7-11.

73. Kremkova E.V., Novoderezhkin V.V., Rabadanova M.G. Laser correction of fibrinous syndrome after conducting antiglaucomatous operations. Glaucoma news 2018; 1(45):60-64.

74. Khusnitdinov I. I., Babushkin A. Е. Comparison of the Effectiveness of Antiglaucomatous Surgeries with Various Glautex Drainage Models. Ophthalmology in Russia 2019; 16(1S):91-95. https://doi.org/10.18008/1816-5095-2019-1S-91-95

75. Gupalo O.D., Slonimsky S.Yu., Kulik A.V. Comparative analysis of remote results of repeated antiglaucoma operations. Glaukoma 2011; 1:19-22.

76. Brinkmann M.P., Michels S., Brinkmann C. et al. Epiretinal membrane surgery outcome in eyes with abnormalities of the central bouquet. Int J Retin Vitr 2021; 7(1):7. https://doi.org/10.1186/s40942-020-00279-0

77. Egbert P.R., Williams A.S., Singh K. et al. A prospective trial of intraoperative fluorouracil during trabeculectomy in a black population. Am J Ophthalmol 1993; 116(5):612-616.


Review

For citations:


Fomin N.E., Kuroyedov A.V. Factors in the development of refractory primary open-angle glaucoma (part 1). National Journal glaucoma. 2022;21(4):79-88. (In Russ.) https://doi.org/10.53432/2078-4104-2022-21-4-79-88

Views: 459


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)