Volume of the filtering bleb in prediction of the effectiveness of glaucoma surgery: preliminary results
https://doi.org/10.53432/2078-4104-2024-23-4-3-10
Abstract
PURPOSE. To explore the potential for predicting the hypotensive effectiveness of glaucoma surgeries based on the parameters of the filtering bleb (FB) measured using optical coherence tomography (OCT).
METHODS. The study included 15 patients (15 eyes) with uncontrolled primary open-angle glaucoma, who underwent standard glaucoma surgery: sinus trabeculectomy with basal iridectomy. Objective assessment of the FB was performed using OCT on postoperative day 2, and then at 7 days, 1 month, and 3 months after surgery. Based on the OCT scans, a three-dimensional model of the FB was constructed, and its volume was calculated.
RESULTS. In 3 patients, by the end of the observation period, the FB volume was less than 5.7 mm³, which was associated with an unsuccessful surgical outcome and an increase in intraocular pressure (IOP) to 22.1±3.2 mm Hg. These patients were prescribed hypotensive therapy to achieve target IOP levels. In the other 12 patients, the IOP remained below 14 mm Hg throughout the observation period, with an average IOP of 11.7±2.3 mm Hg. The FB in these patients was diffuse, and its volume exceeded 5.7 mm³. The successful outcome of the surgery allowed for these patients to avoid the need for additional hypotensive therapy.
CONCLUSION. Long-term success of glaucoma surgery can be predicted using the threshold filtering bleb volume of 5.7 mm³.
About the Authors
V. P. ErichevRussian Federation
Dr. Sci. (Med.), Professor
11A Rossolimo St., Moscow, 119021
I. A. Novikov
Russian Federation
Senior Researcher at the Laboratory of Fundamental Research in Ophthalmology
11A Rossolimo St., Moscow, 119021
G. K. Khachatryan
Russian Federation
Cand. Sci. (Med.), Researcher at the Department of Glaucoma
11A Rossolimo St., Moscow, 119021
A. S. Makarova
Russian Federation
Cand. Sci. (Med.), Senior Researcher at the Department of Glaucoma
11A Rossolimo St., Moscow, 119021
M. V. Budzinskaya
Russian Federation
Dr. Sci. (Med.), Chief Researcher at the Department of Retinal and Optic Nerve Pathology, Professor at the Academic Department of Ophthalmology
11A Rossolimo St., Moscow, 119021
A. O. Tarasenkov
Russian Federation
ophthalmologist
11A Rossolimo St., Moscow, 119021
References
1. GBD 2019 Blindness and Vision Impairment Collaborators; Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. Lancet Glob Health 2021; 9(2):e144-e160. https://doi.org/10.1016/S2214-109X(20)30489-7
2. Tham Y.C., Li X., Wong T.Y., Quigley H.A., Aung T., Cheng C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 2014; 121(11):2081-2090. https://doi.org/10.1016/j.ophtha.2014.05.013
3. Terminology and guidelines for glaucoma. 5th edition. Savona, Italy: European Glaucoma Society; 2020.
4. Natsional’noe rukovodstvo po glaukome dlya praktikuyuschikh vrachei [National glaucoma guideines for practitioners]. Egorov E.A., Astakhov Yu.S., Erichev V.P., eds. Moscow, GEOTAR-Media Publ., 2015. 456 p.
5. Abysheva L.D., Alexandrov A.S., Arapiev M.U. et al. Optimization of diagnosis and treatment options in primary open-angle glaucoma patients. Natsional’nyi zhurnal glaukoma 2016; 15(2):19-35.
6. Gazzard G., Konstantakopoulou E., Garway-Heath D. et al. Selective laser trabeculoplasty versus eye drops for first-line treatment of ocular hypertension and glaucoma (LiGHT): a multicentre randomised controlled trial. Lancet 2019; 393(10180):1505-1516. https://doi.org/10.1016/S0140-6736(18)32213-X
7. Nichani P., Popovic M.M., Schlenker M.B., Park J., Ahmed I.I.K. Microinvasive glaucoma surgery: A review of 3476 eyes. Surv Ophthalmol 2021; 66(5):714-742. https://doi.org/10.1016/j.survophthal.2020.09.005
8. Petrov S.Yu. Filtering bleb classifications. Natsional’nyi zhurnal glaukoma 2014; 13(2):85-94.
9. Wells A.P., Ashraff N.N., Hall R.C., Purdie G. Comparison of two clinical Bleb grading systems. Ophthalmology 2006; 113(1):77-83. https://doi.org/10.1016/j.ophtha.2005.06.037
10. Klink T., Kann G., Ellinger P., Klink J., Grehn F., Guthoff R. The prognostic value of the Wuerzburg bleb classification score for the outcome of trabeculectomy. Ophthalmologica 2011; 225(1):55-60. https://doi.org/10.1159/000314717
11. Smith M., Chipman M.L., Trope G.E., Buys Y.M. Correlation between the Indiana bleb appearance grading scale and intraocular pressure after phacotrabeculectomy. J Glaucoma 2009; 18(3):217-219. https://doi.org/10.1097/IJG.0b013e31817d23e0
12. Golez E., 3rd, Latina M. The use of anterior segment imaging after trabeculectomy. Semin Ophthalmol 2012; 27(5-6):155-159. https://doi.org/10.3109/08820538.2012.707275
13. Wu Q., Zhang Y., Song B.W., Lu B., Guan J.H. [Evaluation of the bleb morphology and the function of post filtration surgery using slit-lamp adapted optical coherence tomography and ultrasound biomicroscopy in glaucoma patients]. Zhonghua Yan Ke Za Zhi 2008; 44(5):402-407.
14. Zhang Y., Wu Q., Zhang M., Song B.W., Du X.H., Lu B. Evaluating subconjunctival bleb function after trabeculectomy using slit-lamp optical coherence tomography and ultrasound biomicroscopy. Chin Med J (Engl) 2008; 121(14):1274-1279.
15. Singh M., Chew P.T., Friedman D.S., Nolan W.P., See J.L., Smith S.D., Zheng C., Foster P.J., Aung T. Imaging of trabeculectomy blebs using anterior segment optical coherence tomography. Ophthalmology 2007; 114(1):47-53. https://doi.org/10.1016/j.ophtha.2006.05.078
16. Kiseleva OA, Filippova OM, Bessmertniy AM, Robustova OV. The role of optical coherent tomography of the anterior eye segment in the postoperative management of glaucoma patients. Russian Ophthalmological Journal 2009; 2(4):15-19.
17. Kojima S., Inoue T., Kawaji T., Tanihara H. Filtration bleb revision guided by 3-dimensional anterior segment optical coherence tomography. J Glaucoma 2014; 23(5):312-315. https://doi.org/10.1097/IJG.0b013e3182741ee6
18. Muraviev SV, Malugin BE, Molotkova IA, Nikolashin SI. Morphologic analysis of aqueous humor outflow path after canaloplastics and classic non-penetrating deep sclerectomy by optical coherence tomography. Oftalmokhirurgiya 2017; 1:27-32.
19. Konstantinidis A., Panos G.D., Triantafylla M., Labiris G., Tsaragli E., Gatzioufas Z., Kozobolis V. Imaging of filtering blebs after implantation of the Ex-PRESS shunt with the use of the Visante optical coherence tomography. Int J Ophthalmol 2015; 8(3):492-495. https://doi.org/10.3980/j.issn.2222-3959.2015.03.10
20. Bikbov M.M., Khusnutdinov I.I. Analysis of the hypotensive effect of Ahmed valve implantation in refractory glaucoma. Natsional’nyi zhurnal glaukoma 2016; 15(3):24-33.
21. Chua J., Mehta J.S., Tan D.T. Use of anterior segment optical coherence tomography to assess secondary glaucoma after penetrating keratoplasty. Cornea 2009; 28(2):243-245. https://doi.org/10.1097/ICO.0b013e318188036d
22. Seo J.H., Kim Y.A., Park K.H., Lee Y. Evaluation of Functional Filtering Bleb Using Optical Coherence Tomography Angiography. Transl Vis Sci Technol 2019; 8(3):14. https://doi.org/10.1167/tvst.8.3.14
23. Leung C.K., Yick D.W., Kwong Y.Y., Li F.C., Leung D.Y., Mohamed S., Tham C.C., Chung-chai C., Lam D.S. Analysis of bleb morphology after trabeculectomy with Visante anterior segment optical coherence tomography. Br J Ophthalmol 2007; 91(3):340-344. https://doi.org/10.1136/bjo.2006.100321
24. Ciancaglini M., Carpineto P., Agnifili L., Nubile M., Lanzini M., Fasanella V., Mastropasqua L. Filtering bleb functionality: a clinical, anterior segment optical coherence tomography and in vivo confocal microscopy study. J Glaucoma 2008; 17(4):308-317. https://doi.org/10.1097/IJG.0b013e31815c3a19
25. Rykov SA, Kosuba SI, Suk SA, Tutchenko LP, Kosuba IS, Venediktova OA. Anatomical and topographical features of filtering blebs after non-penetrating deep sclerectomy in patients with glaucoma according to optical coherence tomography. Oftal’mologicheskiy zhurnal 2014; 4:34-39.
26. Savini G., Zanini M., Barboni P. Filtering blebs imaging by optical coherence tomography. Clin Exp Ophthalmol 2005; 33(5):483-489. https://doi.org/10.1111/j.1442-9071.2005.01066.x
27. Hirooka K., Takagishi M., Baba T., Takenaka H., Shiraga F. Stratus optical coherence tomography study of filtering blebs after primary trabeculectomy with a fornix-based conjunctival flap. Acta Ophthalmol 2010; 88(1):60-64. https://doi.org/10.1111/j.1755-3768.2008.01401.x
28. Wen J.C., Stinnett S.S., Asrani S. Comparison of Anterior Segment Optical Coherence Tomography Bleb Grading, Moorfields Bleb Grading System, and Intraocular Pressure After Trabeculectomy. J Glaucoma 2017; 26(5):403-408. https://doi.org/10.1097/IJG.0000000000000636
29. Raj A., Bahadur H. Morphological analysis of functional filtering blebs with anterior segment optical coherence tomography: A short-term prediction for success of trabeculectomy. Eur J Ophthalmol 2021; 31(4):1978-1985. https://doi.org/10.1177/1120672120924340
30. Kasaragod D., Fukuda S., Ueno Y., Hoshi S., Oshika T., Yasuno Y. Objective Evaluation of Functionality of Filtering Bleb Based on Polarization-Sensitive Optical Coherence Tomography. Invest Ophthalmol Vis Sci 2016; 57(4):2305-2310. https://doi.org/10.1167/iovs.15-18178
31. Hayek S., Labbe A., Brasnu E., Hamard P., Baudouin C. Optical Coherence Tomography Angiography Evaluation of Conjunctival Vessels During Filtering Surgery. Transl Vis Sci Technol 2019; 8(4):4. https://doi.org/10.1167/tvst.8.4.4
32. Mastropasqua R., Brescia L., Di Antonio L., Guarini D., Giattini D., Zuppardi E., Agnifili L. Angiographic biomarkers of filtering bleb function after XEN gel implantation for glaucoma: an optical coherence tomography-angiography study. Acta Ophthalmol 2020; 98(6):e761-e767. https://doi.org/10.1111/aos.14371
33. Yin X., Cai Q., Song R., He X., Lu P. Relationship between filtering bleb vascularization and surgical outcomes after trabeculectomy: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol 2018; 256(12):2399-2405. https://doi.org/10.1007/s00417-018-4136-0
34. Perez-Rico C., Gutierrez-Ortiz C., Moreno-Salgueiro A., Gonzalez-Mesa A., Teus M.A. Visante anterior segment optical coherence tomography analysis of morphologic changes after deep sclerectomy with intraoperative mitomycin-C and no implant use. J Glaucoma 2014; 23(1):e86-90. https://doi.org/10.1097/IJG.0b013e31829ea2c8
35. Kawana K., Kiuchi T., Yasuno Y., Oshika T. Evaluation of trabeculectomy blebs using 3-dimensional cornea and anterior segment optical coherence tomography. Ophthalmology 2009; 116(5):848-855. https://doi.org/10.1016/j.ophtha.2008.11.019
36. Detorakis E.T., Maris T., Papadaki E., Tsilimbaris M.K., Karantanas A.H., Pallikaris I.G. Evaluation of the position and function of aqueous drainage implants with magnetic resonance imaging. J Glaucoma 2009; 18(6):453-459. https://doi.org/10.1097/IJG.0b013e3181895e42
37. Sano I., Tanito M., Uchida K., Katsube T., Kitagaki H., Ohira A. Assessment of Filtration Bleb and Endplate Positioning Using Magnetic Resonance Imaging in Eyes Implanted with Long-Tube Glaucoma Drainage Devices. PLoS One 2015; 10(12):e0144595. https://doi.org/10.1371/journal.pone.0144595
38. Patent of the Russian Federation for invention No.2789334/ 02/01/2023. Byul. No.4. Makarova A.S., Yerichev V.P., Budzinskaya M.V., Khachatryan G.K., Tarasenkov A.O., Novikov I.A. Method for predicting the effectiveness of sinustrabeculectomy. https://patents.google.com/patent/RU2789334C1/ru
Review
For citations:
Erichev V.P., Novikov I.A., Khachatryan G.K., Makarova A.S., Budzinskaya M.V., Tarasenkov A.O. Volume of the filtering bleb in prediction of the effectiveness of glaucoma surgery: preliminary results. National Journal glaucoma. 2024;23(4):3-10. (In Russ.) https://doi.org/10.53432/2078-4104-2024-23-4-3-10