Preview

National Journal glaucoma

Advanced search

Excessive scarring in glaucoma surgery. Part 2: Anti-inflammatory therapy, antimetabolites, angiogenesis inhibitors

https://doi.org/10.53432/2078-4104-2025-24-3-66-75

Abstract

The main complication of glaucoma surgery is excessive scarring of newly created aqueous humor outflow pathways. To prevent fibrotic tissue formation, medications with different mechanisms of action are used intraoperatively and during the early postoperative period.
The primary group of anti-inflammatory drugs used in glaucoma surgery are topical steroids. A particularly high antiinflammatory efficacy has been demonstrated with a slowrelease dexamethasone implant placed under the scleral flap.
Nonsteroidal anti-inflammatory drugs, in addition to their direct effect, can potentiate the hypotensive action of prostaglandin analogs and reduce the severity of their local side effects. The use of antimetabolites such as mitomycin C and 5-fluorouracil is justified by their antifibrotic activity, which inhibits DNA synthesis and, consequently, the proliferation of cells including myofibroblasts. However, they are associated with a high risk of hypotonic complications. Angiogenesis inhibitors suppress vascular endothelial growth factor production and thus block proliferation.
The use of ranibizumab, bevacizumab, and infliximab as adjuncts to standard therapy can enhance the longterm effectiveness of glaucoma surgery. However, their use remains limited and not fully explored.

About the Authors

Yu. Yusef
Krasnov Research Institute of Eye Diseases
Russian Federation

Dr. Sci. (Med.), Director 

11A Rossolimo St., Moscow, 119021 



А. А. Antonov
Krasnov Research Institute of Eye Diseases
Russian Federation

Dr. Sci. (Med.), Head of the Department of Glaucoma 

11A Rossolimo St., Moscow, 119021 



А. М. Subbot
Krasnov Research Institute of Eye Diseases
Russian Federation

Cand. Sci. (Med.), Head of the Laboratory of Fundamental Research in Ophthalmology 

11A Rossolimo St., Moscow, 119021 



I. I. Vitkova
Krasnov Research Institute of Eye Diseases
Russian Federation

postgraduate student 

11A Rossolimo St., Moscow, 119021 



E. V. Emets
Krasnov Research Institute of Eye Diseases
Russian Federation

junior researcher at the Laboratory of Fundamental Research in Ophthalmology 

11A Rossolimo St., Moscow, 119021 



A. A. Vitkov
Krasnov Research Institute of Eye Diseases
Russian Federation

Cand. Sci. (Med.), researcher at the Department of Glaucoma 

11A Rossolimo St., Moscow, 119021 



References

1. Petrov S.Ju. Modern concept of fight against excessive scarring after fistulizing glaucoma surgery. Anti-inflammatory drugs and new trends. Ophthalmology in Russia 2017; 14(2):99-105. https://doi.org/10.18008/1816-5095-2017-1-5-11

2. Zhang, Xuemin M.D.; Vadoothker, Saujanya M.D.; Munir, Wuqaas M. M.D.; Saeedi, Osamah M.D. Ocular Surface Disease and Glaucoma Medications: A Clinical Approach. Eye & Contact Lens: Science & Clinical Practice 2019; 45(1):11-18. https://doi.org/10.1097/ICL.0000000000000544

3. Yanchenko SV, Sakhnov SN, Malyshev AV, et al. Approaches for improvement of ocular surface condition in primary open-angle glaucoma. Russian Annals of Ophthalmology 2024; 140(5):7-16. https://doi.org/10.17116/oftalma20241400517

4. Dorofeev DA, Vitkov AA, Gorobets AV, et al. Effectiveness and safety of a hypotensive preservative-free drug in long-term therapy of glaucoma. Russian Annals of Ophthalmology 2022; 138(5):66-72. https://doi.org/10.17116/oftalma202213805166

5. Nagornova Z.M., Kuroyedov A.V., Petrov S.Yu., Seleznev A.V., Gazizova I.R., Pavlova L.S. The effect of topical hypotensive therapy on ocular surface and glaucoma surgery outcomes in patients with primary open-angle glaucoma. Natsional’nyi zhurnal glaukoma 2019; 18(4):96-107. https://doi.org/10.25700/NJG.2019.04.08

6. Petrov S.Yu., Antonov A.A., Makarova A.S., Vostrukhin S.V. Possibility of extension of the hypotensive effect of trabeculectomy. Russian Annals of Ophthalmology 2015; 131(1):75-81. https://doi.org/10.17116/oftalma2015131175-81

7. Petrov S.Yu., Antonov A.A., Makarova A.S., Savel’eva T.A., Ryabova A.V., Loshchenov V.B. The effect of preoperative topical anti-inflammatory treatment on anterior segment and trabeculectomy outcomes assessed by venous oxygen saturation. National journal glaucoma 2016; 15(3):43-50.

8. Ostroumova OD, Shikh EV, Rebrova EV, Ryazanova AYu, Moshetova LK. Drug-induced glaucoma. Russian Annals of Ophthalmology 2020; 136(2):107-116. https://doi.org/10.17116/oftalma2020136021107

9. Almatlouh, A.; Bach-Holm, D.; Kessel, L. Steroids and non-steroidal anti-inflammatory drugs in the post-operative regime after trabeculectomy—Which provides the better outcome? A systematic review and meta-analysis. Acta Ophthalmol 2019; 97(2):146-157. https://doi.org/10.1111/aos.13919

10. Sánchez-López E, Esteruelas G, Ortiz A, Espina M, Prat J, Muñoz M, Cano A, Calpena AC, Ettcheto M, Camins A, et al. Dexibuprofen Biodegradable Nanoparticles: One Step Closer towards a Better Ocular Interaction Study. Nanomaterials 2020; 10(4):720. https://doi.org/10.3390/nano10040720

11. Furino, Claudio; Boscia, Francesco1; Cicinelli, Maria Vittoria; Sborgia, Alessandra; Alessio, Giovanni. Subconjunctival sustained-release dexamethasone implant as an adjunct to trabeculectomy for primary open angle glaucoma. Indian Journal of Ophthalmology 2016; 64(3):251-252. https://doi.org/10.4103/0301-4738.181735

12. Skorokhoda, V.; Semenyuk, N.; Melnyk, J.; Suberlyak, O. Hydrogels penetration and sorption properties in the substances release controlled processes. Chem Chem Technol 2009, 3:117.

13. Ekgardt V.F., Dorofeev D.A. Prostaglandin analogs efficiency in the treatment of simple and pseudoexfoliative open angle glaucoma. Reflection 2017; 1(1):40-46.

14. Sharif, N.A., Kelly, C.R., Crider, J.Y., Williams, G.W., Xu, S.X. Ocular hypotensive FP prostaglandin (PG) analogs: PG receptor subtype binding affinities and selectivities, and agonist potencies at FP and other PG receptors in cultured cells. J Ocul Pharmacol Ther 2003; 19:501-515. https://doi.org/10.1089/108076803322660422

15. Antonov A.A., Vitkov A.A., Agadzhanyan T.M. The efficacy and safety of the domestic travoprost generic in various modes of therapy for primary open-angle glaucoma. National Journal glaucoma 2021; 20(4):50-56. https://doi.org/10.53432/2078-4104-2021-20-4-50-56

16. Aihara, M. Prostanoid receptor agonists for glaucoma treatment. Jpn. J. Ophthalmol 2021, 65:581-590. https://doi.org/10.1007/s10384-021-00844-6

17. Rao, P.; Knaus, E.E. Evolution of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs): Cyclooxygenase (COX) Inhibition and Beyond. J Pharm Pharm Sci 2008, 11(2):81s-110s. https://doi.org/10.18433/J3T886

18. Chiba T, Kashiwagi K, Chiba N, et alEffect of non-steroidal antiinflammatory ophthalmic solution on intraocular pressure reduction by latanoprost in patients with primary open angle glaucoma or ocular hypertension. British Journal of Ophthalmology 2006; 90:314-317. https://doi.org/10.1136/bjo.2005.080895

19. Tofflemire, K.; Whitley, E.M.; Allbaugh, R.; Ben-Shlomo, G.; Griggs, A.; Strong, T.; Whitley, R.D. Effect of topical ophthalmic latanoprost 0.005% solution alone and in combination with diclofenac 0.1% solution in healthy horses: A pilot study. Vet Ophthalmol 2017, 20(5):398- 404. https://doi.org/10.1111/vop.12439

20. Özyol, Pelin MD; Özyol, Erhan MD; Erdoğan, Beyza Doğanay PhD. The Interaction of Nepafenac and Prostaglandin Analogs in Primary Open-angle Glaucoma Patients. Journal of Glaucoma 2016; 25(3): e145-e149. https://doi.org/10.1097/IJG.0000000000000204

21. Lo, K.J.; Ko, Y.C.; Hwang, D.K.; Liu, C.J.L. The influence of topical non-steroidal anti-inflammatory drugs on the intraocular pressure lowering effect of topical prostaglandin analogues—A systemic review and meta-analysis. PLoS ONE 2020: 15, e0239233. https://doi.org/10.1371/journal.pone.0239233

22. Petrov S.Yu. Needling as a method of activating filter bags: indications, technical features. Glaukoma 2013; 2:75-84.

23. Zahidov A.B., Seleznev A.V., Gazizova I.R., Kuroyedov A.V., Petrov S.Yu., Karimov U.R. Intraoperative use of antimetabolites in glaucoma surgery. National Journal glaucoma 2020; 19(1):40-45. https://doi.org/10.25700/NJG.2020.01.06

24. Wolters JEJ, van Mechelen RJS, Al Majidi R, Pinchuk L, Webers CAB, Beckers HJM, Gorgels TGMF. History, presence, and future of mitomycin C in glaucoma filtration surgery. Curr Opin Ophthalmol 2021; 32(2):148-159. https://doi.org/10.1097/ICU.0000000000000729

25. Al Habash, A.; Aljasim, L.A.; Owaidhah, O.; Edward, D.P. A review of the efficacy of mitomycin C in glaucoma filtration surgery. Clin Ophthalmol 2015, 9, 1945-1951. https://doi.org/10.2147/OPTH.S80111

26. Agarwal N, Krishna TS, Simha RA et al. Comparison of the safety and efficacy of mitomycin C 0.02% used intra-operatively by subconjunctival injection versus direct scleral application using sponges in phacotrabeculectomy: a prospective randomized controlled trial. Indian J Ophthalmol 2024; 72:402-407. https://doi.org/10.4103/IJO.IJO_1308_23

27. Astakhov Yu.S., Egorov E.A., Brezel Yu.A. Surgical treatment of refractory glaucoma. RMJ Clinical Ophthalmology 2006; 2(1):25-27.

28. Green, E.; Wilkins, M.; Bunce, C.; Wormald, R. 5-Fluorouracil for glaucoma surgery. Cochrane Database Syst Rev 2014, 2, CD001132. https://doi.org/10.1002/14651858.CD001132.pub2

29. Cabourne, E.; Clarke, J.C.; Schlottmann, P.G.; Evans, J.R. Mitomycin C versus 5-Fluorouracil for wound healing in glaucoma surgery. Cochrane Database Syst Rev 2015; 2015(11):CD006259. https://doi.org/10.1002/14651858.CD006259.pub2

30. Mamikonyan V.R., Petrov S.Yu., Mazurova Yu.V. et al. Postoperative adjuvant subconjunctival ranibizumab in enhancing trabeculectomy efficacy. National Journal glaucoma 2016; 15(2):61-73.

31. Lopilly Park H.Y., Kim J.H., Ahn M.D., Park C.K. Level of vascular endothelial growth factor in tenon tissue and results of glaucoma surgery. Arch Ophthalmol 2012; 130(6):685-689. https://doi.org/10.1001/archophthalmol.2011.2799

32. Hervé, M.A.; Buteau-Lozano, H.; Mourah, S.; Calvo, F.; Perrot-Applanat, M. VEGF189 stimulates endothelial cells proliferation and migration in vitro and up-regulates the expression of Flk-1/KDR mRNA. Exp Cell Res 2005, 309(1):24-31. https://doi.org/10.1016/j.yexcr.2005.05.022

33. Rud'ko A.S., Budzinskaya M.V., Andreeva I.V., Karpilova M.A. Effect of intravitreal injections of ranibizumab and aflibercept on the retinal nerve fiber layer in patients with concomitant neovascular agerelated macular degeneration and glaucoma. Russian Annals of Ophthalmology 2019; 135(5):177-183. https://doi.org/10.17116/oftalma2019135052177

34. Sorbera LA, Leeson PA, Bayés M. Ranibizumab: treatment of age-related macular degeneration humanized monoclonal anti-VEGF antibody angiogenesis inhibitor. Drugs Future 2003; 28(6):541-545. https://doi.org/10.1358/dof.2003.028.06.738510

35. Liu, L.; Xu, Y.; Huang, Z.; Wang, X. Intravitreal ranibizumab injection combined trabeculectomy versus Ahmed valve surgery in the treatment of neovascular glaucoma: Assessment of efficacy and complications. BMC Ophthalmol 2016; 26:65-74. https://doi.org/10.1186/s12886-016-0248-7

36. Kahook, M.Y. Bleb Morphology and Vascularity after Trabeculectomy with Intravitreal Ranibizumab: A Pilot Study. Am J Ophthalmol 2010; 150(3):399-403.e1. https://doi.org/10.1016/j.ajo.2010.03.025

37. Li, D.K.; Zhang, F.; Yu, J.Q.; Liu, Z.K.; Wang, Y.; Mu, Y.T. Clinical observation of ranibizumab combined with surgery in the treatment of neovascular glaucoma with vitreous hemorrhage. Int Ophthalmol 2022; 42(9):2757-2763. https://doi.org/10.1007/s10792-022-02265-x

38. Hurwitz, H. Integrating the anti–VEGF-A humanized monoclonal antibody bevacizumab with chemotherapy in advanced colorectal cancer. Clin Color Cancer 2004; 4(Suppl. 2):S62-S68. https://doi.org/10.3816/CCC.2004.s.010

39. Kandarakis, S.; Kontaxakis, A.; Doumazos, L.; Petrou, P.; Droutsas, K.; Papaconstantinou, D.; Georgalas, I. Assessing safety and success after using bevacizumab, 5-fluorouracil or placebo in primary trabeculectomy. A prospective randomized placebo controlled 1-year follow-up study. Cutan Ocul Toxicol 2022, 41, 25-32. https://doi.org/10.1080/15569527.2021.2003376

40. Van Bergen, T.; Vandewalle, E.; Moons, L.; Stalmans, I. Complementary effects of bevacizumab and MMC in the improvement of surgical outcome after glaucoma filtration surgery. Acta Ophthalmol 2015; 93(7):667-678. https://doi.org/10.1111/aos.12766


Review

For citations:


Yusef Yu., Antonov А.А., Subbot А.М., Vitkova I.I., Emets E.V., Vitkov A.A. Excessive scarring in glaucoma surgery. Part 2: Anti-inflammatory therapy, antimetabolites, angiogenesis inhibitors. National Journal glaucoma. 2025;24(3):66-75. (In Russ.) https://doi.org/10.53432/2078-4104-2025-24-3-66-75

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)