Preview

National Journal glaucoma

Advanced search

New technologies in primary open-angle glaucoma diagnostics

Abstract

PURPOSE: To determine the most important diagnostic criteria to distinguish the preperimetric glaucoma from the perimetric stage using complex analysis of structural, functional and ocular blood flow parameters. METHODS: 90 eyes, including 30 eyes with preperimetric glaucoma, 30 eyes with perimetric glaucoma and 30 normal eyes, were analyzed. The average thickness of the GCC, retinal nerve fiber layer thickness (avg. RNFLT) and choroidal thickness were measured using RTVue spectral-domain optical coherence tomography (SD-OCT). Perimetry - using Humphrey test («Carl Zeiss Meditec», Dublin, CA). Ocular blood flow velocity was measured by the color Doppler mapping («VOLUSON 730 ProSystem»). Intraocular pressure (lOPcc) and corneal hysteresis (CH) were determined using «Ocular Response Analyzer» (ORA). Standardized statistics (Z-value) of Wilcoxon - MannWhitney rank sum test and the area (S-ROC) under the receiver operating characteristic curve for logistic regression model was used to determine the most important diagnostic criteria in glaucoma. RESULTS: The difference between perimetric and preperimetric glaucoma could be characterized by 5 important diagnostic criteria: avg. RNFLT (S-ROC 0.93; z-value 5.75), PSD (0.91; -5.52), peripapillar choroidal thickness (0.7; 2.69), the end diastolic blood flow velocity in the medial posterior ciliary arteries (0.7; 2.55) and corneal hysteresis (0.68; 2.41). CONCLUSIONS: Five clinical parameters have been determined as the most important to distinguish the preperimetric glaucoma from the perimetric stage: avg. RNFLT, PSD, peripapillar choroidal thickness, the end diastolic blood flow velocity in the medial posterior ciliary arteries and corneal hysteresis. This data should be considered in glaucoma monitoring.

About the Authors

N. I. Kurysheva
The Ophthalmological Center of the Federal Medical and Biological Agency, Clinical Hospital No. 86
Russian Federation


O. A. Parshunina
The Ophthalmological Center of the Federal Medical and Biological Agency, Clinical Hospital No. 86
Russian Federation


T. D. Ardzhevnishvili
The Ophthalmological Center of the Federal Medical and Biological Agency, Clinical Hospital No. 86
Russian Federation


E. Yu. Irtegova
The Ophthalmological Center of the Federal Medical and Biological Agency, Clinical Hospital No. 86
Russian Federation


T. N. Kiseleva
The Helmholtz Moscow Research Institute of Eye Diseases
Russian Federation


M. B. Lagutin
The Lomonosov Moscow State Institute
Russian Federation


A. V. Fomin
«Tradomed Invest»
Russian Federation


References

1. Hirooka K., Fujiwara A., Shiragami C. et al. Relationship between progression of visual field damage and choroidal thickness in eyes with normal-tension glaucoma. Clin Exp Ophthalmol 2012; 40 576-582. doi: 10.1111/j.1442-9071.2012.02762.x

2. Greenfield D.S., Bagga H., Knighton R.W. Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography. Arch Ophthalmol 2003; 121: 41-46. doi: 10.1097/01.ijg.0000176930.21853.04

3. Quigley H.A., Nickells R.W., Kerrigan L.A., Pease M.E., Thibault D.J., Zack D.J. Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci 1995; 36(5): 774-786. doi: org/10.1007/bf00194473

4. Hood D.C., Anderson S.C., Wall M. et al. A test of a linear model of glaucomatous structure-function loss reveals sources of variability in retinal nerve fiber and visual field measurement. Invest Ophthalmol Vis Sci 2009; 50: 4254-4255. doi: 10.1167/iovs.08-2697.

5. Tan O., Chopra V., Lu A.T. et al. Detection of macular ganglion cell loss in glaucoma by Fourier-Domain optical coherence tomography. Ophthamology 2009; 116: 2305-2314. doi: 10.1016/j.ophtha.2009.05.025

6. Rao H., Zangwill L.M., Weinreb R.N. et al. Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis. Ophthalmology 2010; 117: 1692-1699. doi: 10.1016/j.ophtha.2010.11.029

7. Mori S., Hangai M., Sakamoto A. et al. Spectral-domain optical coherence tomography measurement of macular volume for diagnosing glaucoma. J Glaucoma 2010; 19: 528-534. doi: 10.1097/ijg.0b013e3181ca7acf

8. Шпак А.А., Севостьянова М.К., Огородникова С.Н. Оценка макулярного слоя ганглиозных клеток методом спектральной оптической когерентной томографии в диагностике начальной глаукомы. Вестник офтальмологии 2013; 6: 16-18. [Shpak A.A., Sevostyanova M.K., Ogorodnikova S.N. Evaluation of macular ganglion cell layer by spectral optical coherence tomography in the diagnosis of primary glaucoma. Vestn Oftalmol 2013; 6: 16-18. (In Russ.)]. doi: 10.1007/ s00417-011-1808-4.

9. Ojima T., Tanabe T., Hangai M. et al. Measurement of retinal nerve fiber layer thickness and macular volume for glaucoma detection using optical coherence tomography. Jpn J Ophthalmol 2007; 51: 197-203. doi6: org/10.1007/s10384-006-0433-y.

10. Курышева Н.И., Арджевнишвили Т.Д., Киселева Т.Н., Фомин А.В. Хориоидея при глаукоме: результаты исследования методом оптической когерентной томографии. Глаукома 2013; 4: 73-83. [Kurysheva N.I., Ardzhevnishvili T.D., Kiseleva T.N., Fomin A.V. Choroid in glaucoma: results of a study by optical coherence tomography. Glaucoma 2013; 4: 73-83. (In Russ.)].

11. Martinez A., Sanchez-Salorio M. Predictors for visual field progression and the effects of treatment with dorzolamide 2% or brinzolamide 1% each added to timolol 0.5% in primary open-angle glaucoma. Acta Ophthalmol 2009: 88: 541-552. doi: 10.1111/j.1755-3768.2009.01595.x.

12. Arintawati P., Sone T., Akita T., Tanaka J., Kiuchi Y. The applicability of ganglion cell complex parameters determined from SD-OCT images to detect glaucomatous eyes. J Glaucoma 2013; 22(9): 713-718. doi: 10.1097/ijg.0b013e318259b2e1.

13. Hayreh S.S. Physiological anatomy of the choroidal vascular bed. Int Ophthalmol 1983; 6(2): 85-93. doi: 10.1007/ bf00127636.

14. Курышева Н.И., Киселева Т.Н., Ходак Н.А. Исследование биоэлектрической активности и регионарной гемодинамики при глаукоме. Клиническая офтальмология 2012; 3: 91-94. [Kurysheva N.I., Kiseleva T.N., Hodak N.A. The study of bioelectric activity and regional hemodynamics in glaucoma. Clinical Ophthalmology 2012; 3: 91-94 (In Russ.)].

15. Курышева Н.И., Киселева Т.Н., Рыжков П.К., Фомин А.В., Ходак Н.А., Арджевнишвили Т.Д. Влияние венозного кровотока глаза на состояние комплекса ганглиозных клеток сетчатки у больных первичной открытоугольной глаукомой. Офтальмология 2013; 1: 26-31. [Kurysheva N.I., Kiseleva T.N., Ryzhkov P.K., Fomin A.V., Hodak N.A., Ardzhevnishvili T.D. Influence of venous blood flow in the eyes of the complex state of retinal ganglion cells in patients with primary open-angle glaucoma. Ophthalmology 2013; 1: 26-31 (In Russ.)].

16. Raitta C., Sarmela T. Fluorescein angiography of the optic disc and the peripapillary area in chronic glaucoma. Acta Ophthalmol 1970; 48: 303-308. doi: 10.1111/j.17553768.1970.tb08199.x.

17. Laatikainen L. Fluorescein angiographic studies of the peripapillary and perilimbal regions in simple, capsular and low-tension glaucoma. Acta Ophthalmol 1971; 111: 3-83.

18. Geijssen H.C. Studies on normal pressure glaucoma. Amstelveen: Kugler Publications, 1991.

19. Duijm F., Berg T., Greve E. Choroidal haemodynamics in glaucoma. Brit J Ophthalmol 1997; 81: 735-742. doi: 10.1136/bjo.81.9.735.

20. Hayreh S.S. Blood flow in the optic head andfactors that may influence it. Prog Retin Eye Res 2001; 20(5): 595-624. doi: 10.1016/s1350-9462(01)00005-2.

21. Grieshaber M.C., Flammer J. Blood flow in glaucoma. Curr Opin Ophthalmol 2005; 16: 79-83. doi: 10.1097/01.icu.0000156134.38495.0b.

22. Rusia D., Harris A., Pernic A. et al. Feasibility of creating a normative database of colour doppler imaging parameters in glaucomatous eyes and controls (Review). Br J Ophthalmol 2010; 95(9): 1193-1198. doi: 10.1136/bjo.2010.188219.

23. Hwang J., Konduru R., Zhang X., Tan O., Francis B., Varma R., Sehi M., Greenfield D., Sadda S., Huang D. Relationship among visual field, blood flow, and neural structure measurements in glaucoma. Invest Ophthalmol Vis Sci 2012; 53: 3020-3026. doi: 10.1167/iovs.11-8552.

24. Wang Y., Bower B.A., Izatt J.A., Tan O., Huang D. Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography. J Biomed Opt 2008; 13(6). Doi: 10.1117/1.2998480.

25. Wang Y., Fawzi A.A., Varma R. et al. Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases. Invest Ophthalmol Vis Sci 2010; 52: 840-845. doi: 10.1167/iovs.10-5985.

26. Weinreb R.N., Harris A. Ocular blood flow in glaucoma: consensus series 6. The Netherlands: Kugler Publications; 2009.

27. Leske M.C., Heijl A., Hussein M., Bengtsson B., Hyman L., Komaroff E. Early Manifest Glaucoma Trial Group: Factors for glaucoma progression and the effect of treatment (the Early Manifest Glaucoma Trial). Arch Ophthalmol 2004; 121: 48-56. doi: 10.1097/00055735-200404000-00008.

28. Sehi M., Goharian I., Konduru R., Tan O., Srinivas S., Sadda S.R., Francis B.A., Huang D., Greenfield D.S. Retinal blood flow in glaucomatous eyes with single-hemifield damage. Ophthalmology 2014; 121(3): 750-758. doi: 10.1016/j.ophtha.2013.10.022.

29. Nouri-Mahdavi K., Hoffman D., Coleman A.L., Liu G., Li.G., Gaasterland D., Caprioli J. Advanced Glaucoma Intervention Study: Predictive factors for glaucomatous visual field progression in the Advanced Glaucoma Intervention Study. Ophthalmology 2004; 111: 1627-1635. doi: 10.1016/j.ophtha.2004.02.017.

30. Bengtsson B., Leske M.C., Hyman L., Heijl A. The Early Manifest Glaucoma Trial Group: Fluctuation of intraocular pressure and glaucoma progression in the Early Manifest Glaucoma Trial. Ophthalmology 2007; 114: 205-209. doi: 10.1016/j.ophtha.2006.07.060.

31. Heijl A., Leske M.C., Bengtsson B., Hyman L., Bengtsson B., Hussein M. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 2002; 120: 1268-1279. doi: 10.1001/archopht.120.10.1268.

32. Musch D.C., Gillespie B.W., Lichter P.R., Niziol L.M., Janz N.K. Visual field progression in the Collaborative Initial Glaucoma Treatment Study: the impact of treatment and other baseline factors. Ophthalmology 2009; 116: 200-207. doi: 10.1016/j.ophtha.2008.08.051.

33. Kass M.A., Heuer D.K., Higginbotham E.J. et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002; 120: 701-713. doi: 10.1001/archopht.120.6.701.

34. Авдеев Р.В., Александров А.С., Бакунина Н.А., Басинский А.С., Блюм Е.А., Брежнев А.Ю., и др. Модель манифестирования и исходов первичной открытоугольной глаукомы. Клиническая медицина 2014;92(12): 64-72. [Avdeev R.V., Alexandrov A.S., Bakunina N.A. Basinsky A.S., Blyum E.A., Brezhnev A.Yu. et al. A model of primary open-angle glaucoma: manifestations and outcomes. Klinicheskaya meditsina 2014;92(12): 64-72. (In Russ.)].

35. Куроедов А.В., Брежнев А.Ю., Александров А.С., Огородникова В.Ю. Принципы лечения начальной стадии глаукомы: хирургия против терапии (обзор литературы). Военномедицинский журнал 2011; 332(5): 28-35. [Kuroyedov A.V., Brezhnev A.Yu., Alexandrov A.S., Ogorodnikova V.Yu. Principles of treatment of earlystage glaucoma: Surgery vs. Therapy (Review of literature). Voenno-meditsinskii zhurnal 2011; 332(5): 28-35. (In Russ.)].

36. Куроедов А.В., Брежнев А.Ю., Александров А.С. Как понизить уровень внутриглазного давления на 30% у пациентов с глаукомой (обзор литературы). Военномедицинский журнал 2009; 330(6): 40-46. [Kuroyedov A.V., Brezhnev A.Yu., Alexandrov A.S. Principles of reduction of ophthalmotonous pressure on 30% by the patients with glaucoma (Review of literature). Voenno-meditsinskii zhurnal 2009; 330(6): 40-46. (In Russ.)].

37. Куроедов А.В., Авдеев Р.В., Александров А.С., Бакунина Н.А., Басинский А.С., Блюм Е.А., Брежнев А.Ю. и др. Первичная открытоугольная глаукома: в каком возрасте пациента и при какой длительности заболевания может наступить слепота. Медико-биологические проблемы жизнедеятельности 2014;12(2): 74-84. [Kuroyedov A.V., Avdeev R.V., Alexandrov A.S., Bakunina N.A., Basinsky A.S., Blyum E.A., Brezhnev A.Yu. et al. Primary open-angle glaucoma: at what age and at what disease duration blindness can occur. Medical and biological problems of life activity 2014; 2(12): 74-84. (In Russ.)].

38. Авдеев Р.В., Александров А.С., Бакунина Н.А., Басинский А.С., Блюм Е.А., Брежнев А.Ю., и др. Прогнозирование продолжительности сроков заболевания и возраста пациентов с разными стадиями первичной открытоугольной глаукомы. Национальный журнал глаукома 2014; 13(2): 60-69. [Avdeev R.V., Alexandrov A.S., Bakunina N.A., Basinsky A.S., Blyum E.A., Brezhnev A.Yu. et al. Prediction of disease duration and age of patients with different primary open-angle glaucoma changes. Natsional’nyi zhurnal glaucoma 2014; 13(2): 60-69. (In Russ.)].

39. Куроедов А.В., Авдеев Р.В., Александров А.С., Бакунина Н.А., Басинский А.С., Блюм Е.А., Брежнев А.Ю. и др. Предполагаемый возраст пациентов и период болезни для проведения интенсивных лечебно-профилактических манипуляций при первичной глаукоме. Офтальмология Восточная Европа 2014; 22(3): 60-71. [Kuroyedov A.V, Avdeev R.V., Alexandrov A.S., Bakunina N.A., Basinsky A.S., Blyum E.A., Brezhnev A.Yu. et al. Projected age of patients and disease duration for intensive therapeutic and prophylactic actions in primary glaucoma. Oftalmologia Vostochnaya Evropa 2014; 3(22): 60-71. (In Russ.)].

40. Luce D.A., Taylor D. Ocular response analyzer measures corneal biomechanical properties and IOP. Provides new indicators for corneal specialties and glaucoma management. Reichert Ophthalmic Instruments 2005; 12.

41. Medeiros F.A., Meira-Freitas D., Lisboa R., Kuang T.M., Zangwill L.M., Weinreb R.N. Corneal hysteresis as a risk factor for glaucoma progression: a prospective longitudinal study. Ophthalmology 2013; 120(8): 1533-1540. doi: 10.1016/j.ophtha.2013.01.032.


Review

For citations:


Kurysheva N.I., Parshunina O.A., Ardzhevnishvili T.D., Irtegova E.Yu., Kiseleva T.N., Lagutin M.B., Fomin A.V. New technologies in primary open-angle glaucoma diagnostics. National Journal glaucoma. 2015;14(2):22-31. (In Russ.)

Views: 863


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)