Современные методы функциональной диагностики и мониторинга глаукомы. Часть 1. Периметрия как метод функциональных исследований

Полный текст:


Аннотация

Глаукома - хроническая оптическая нейропатия, характеризующаяся потерей ганглиозных клеток с развитием специфических изменений диска зрительного нерва (ДЗН) и слоя нервных волокон сетчатки (СНВС). Раннее выявление заболевания играет важную роль в предотвращении развития структурных нарушений и необратимой потери зрения. Диагностика глаукомы основана на оценке сохранности структур зрительного нерва и зрительных функций. Результаты клинического осмотра ДЗН и СНВС носят субъективный характер и сильно варьируют. В связи с этим исследования последних лет были направлены на разработку дополнительных объективных методов диагностики глаукомы. Была изучена возможность применения конфокальной сканирующей лазерной офтальмоскопии, сканирующей лазерной периметрии и оптической когерентной томографии для оценки состояния ДЗН. С целью обеспечения раннего выявления дефектов полей зрения в настоящее время рассматриваются варианты замены стандартной автоматической периметрии (standard automated perimetry, SAP) на селективную, которая включает в себя коротковолновую автоматическую периметрию (short-wavelength automated perimetry, SWAP) и периметрию с иллюзией удвоения пространственной частоты (frequency-doubling technology perimetry, FDT). Статья представляет собой обзор современных методов диагностики глаукомы в контексте их применения в клинической практике.

Об авторах

В. П. Еричев
ФГБНУ «НИИ глазных болезней»
Россия


Сергей Юрьевич Петров
ФГБНУ «НИИ глазных болезней»
Россия


И. В. Козлова
ФГБНУ «НИИ глазных болезней»
Россия


А. С. Макарова
ФГБНУ «НИИ глазных болезней»
Россия


В. С. Рещикова
ФГБНУ «НИИ глазных болезней»
Россия


Список литературы

1. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration.The AGIS Investigators. Am J Ophthalmol 2000; 130(4): 429-440.

2. Gordon M.O., Kass M.A. The Ocular Hypertension Treatment Study: design and baseline description of the participants. Arch Ophthalmol 1999; 117(5): 573-583.

3. Leske M.C., Heijl A., Hyman L., Bengtsson B. Early Manifest Glaucoma Trial: design and baseline data. Ophthalmology 1999; 106(11): 2144-2153.

4. Miglior S., Zeyen T., Pfeiffer N., Cunha-Vaz J. et al. The European glaucoma prevention study design and baseline description of the participants. Ophthalmology 2002; 109(9): 1612-1621.

5. Musch D.C., Lichter P.R., Guire K.E., Standardi C.L. The Collaborative Initial Glaucoma Treatment Study: study design, methods, and baseline characteristics of enrolled patients. Ophthalmology 1999; 106(4): 653-662.

6. Gordon M.O., Beiser J.A., Brandt J.D., Heuer D.K. et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 2002;120(6): 714-720; discussion 829-730.

7. Medeiros F.A., Weinreb R.N., Sample P.A., Gomi C.F. et al. Validation of a predictive model to estimate the risk of conversion from ocular hypertension to glaucoma. Arch Ophthalmol 2005; 123(10): 1351-1360. doi: 10.1001/archopht.123.10.1351.

8. Ocular Hypertension Treatment Study G., European Glaucoma Prevention Study G., Gordon M.O., Torri V. et al. Validated prediction model for the development of primary open-angle glaucoma in individuals with ocular hypertension. Ophthalmology 2007; 114(1): 10-19. doi: 10.1016/j.oph-tha.2006.08.031.

9. European Glaucoma Prevention Study G., Miglior S., Pfeiffer N., Torri V. et al. Predictive factors for open-angle glaucoma among patients with ocular hypertension in the European Glaucoma Prevention Study. Ophthalmology 2007; 114(1): 3-9. doi: 10.1016/j.ophtha.2006.05.075.

10. Kass M.A., Heuer D.K., Higginbotham E.J., Johnson C.A. et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002; 120(6): 701-713; discussion 829-730.

11. Heijl A., Leske M.C., Bengtsson B., Bengtsson B., Hussein M. Early Manifest Glaucoma Trial G. Measuring visual field progression in the Early Manifest Glaucoma Trial. Acta Ophthalmol Scand 2003; 81(3): 286-293.

12. Heijl A., Leske M.C., Bengtsson B., Hyman L. et al. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 2002;120(10): 1268-1279.

13. Higginbotham E.J., Gordon M.O., Beiser J.A., Drake M.V. et al. The Ocular Hypertension Treatment Study: topical medication delays or prevents primary open-angle glaucoma in African American individuals. Arch Ophthalmol 2004; 122(6): 813-820. doi: 10.1001/archopht.122.6.813.

14. Quigley H.A., Dunkelberger G.R., Green W.R. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 1989; 107(5): 453-464.

15. Kerrigan-Baumrind L.A., Quigley H.A., Pease M.E., Kerrigan D.F., Mitchell R.S. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 2000; 41(3): 741-748.

16. Artes P.H., Iwase A., Ohno Y., Kitazawa Y., Chauhan B.C. Properties of perimetric threshold estimates from Full Threshold, SITA Standard, and SITA Fast strategies. Invest Ophthalmol Vis Sci 2002; 43(8): 2654-2659.

17. Keltner J.L., Johnson C.A., Levine R.A., Fan J. et al. Normal visual field test results following glaucomatous visual field and points in the Ocular Hypertension Treatment Study. Arch Ophthalmol 2005; 123(9): 1201-1206. doi: 10.1001/archopht.123.9.1201.

18. Keltner J.L., Johnson C.A., Anderson D.R., Levine R.A. et al. The association between glaucomatous visual fields and optic nerve head features in the Ocular Hypertension Treatment Study. Ophthalmology 2006; 113(9): 1603-1612. doi: 10.1016/j.ophtha.2006.05.061.

19. Blumenthal E.Z., Sample P.A., Berry C.C., Lee A.C. et al. Evaluating several sources of variability for standard and SWAP visual fields in glaucoma patients, suspects, and normals. Ophthalmology 2003; 110(10): 1895-1902. doi: 10.1016/S0161-6420(03)00541-4.

20. Bengtsson B., Heijl A. Evaluation of a new perimetric threshold strategy, SITA, in patients with manifest and suspect glaucoma. Acta Ophthalmol Scand 1998; 76(3): 268-272.

21. Weinreb R.N., Greve E.L. Glaucoma diagnosis, structure and function: reports and consensus statements of the 1st global AIGS Consensus meeting on «structure and function in the management of glaucoma». The Hague: Kugler Publications; 2004.

22. Dacey D.M., Lee B.B. The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 1994; 367(6465): 731-735. doi: 10.1038/367731a0.

23. Dacey D.M., Packer O.S. Colour coding in the primate retina: diverse cell types and cone-specific circuitry. Curr Opin Neurobiology 2003; 13(4): 421-427.

24. Martin P.R., White A.J., Goodchild A.K., Wilder H.D., Sefton A.E. Evidence that blue-on cells are part of the third geniculo-cortical pathway in primates. Europ J Neuroscience 1997; 9(7): 1536-1541.

25. Bengtsson B. A new rapid threshold algorithm for short-wave-length automated perimetry. Invest Ophthalmol Vis Sci 2003; 44(3): 1388-1394.

26. Bengtsson B., Heijl A. Normal intersubject threshold variability and normal limits of the SITA SWAP and full threshold SWAP perimetric programs. Invest Ophthalmol Vis Sci 2003; 44(11): 5029-5034.

27. Sample P.A., Taylor J.D., Martinez G.A., Lusky M., Weinreb R.N. Short-wavelength color visual fields in glaucoma suspects at risk. Am J Ophthalmol 1993; 115(2): 225-233.

28. Wild J.M., Cubbidge R.P., Pacey I.E., Robinson R. Statistical aspects of the normal visual field in short-wavelength automated perimetry. Invest Ophthalmol Vis Sci 1998; 39(1): 54-63.

29. Bengtsson B., Heijl A. Diagnostic sensitivity of fast blue-yellow and standard automated perimetry in early glaucoma: a comparison between different test programs. Ophthalmology 2006; 113(7): 1092-1097. doi: 10.1016/j.ophtha.2005.12.028.

30. Sample P.A., Weinreb R.N. Progressive color visual field loss in glaucoma. Invest Ophthalmol Vis Sci 1992; 33(6): 2068-2071.

31. Johnson C.A., Adams A.J., Casson E.J., Brandt J.D. Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss. Arch Ophthalmol 1993; 111(5): 645-650.

32. Johnson C.A., Adams A.J., Casson E.J., Brandt J.D. Progression of early glaucomatous visual field loss as detected by blue-on-yellow and standard white-on-white automated perimetry. Arch Ophthalmol 1993; 111(5): 651-656.

33. Johnson C.A., Sample P.A., Zangwill L.M., Vasile C.G. et al. Structure and function evaluation (SAFE): II. Comparison of optic disk and visual field characteristics. Am J Ophthalmol 2003; 135(2): 148-154.

34. Keltner J.L., Johnson C.A., Cello K.E., Bandermann S.E. et al. Visual field quality control in the Ocular Hypertension Treatment Study (OHTS). J Glaucoma 2007; 16(8): 665-669. doi: 10.1097/IJG.0b013e318057526d.

35. Sample P.A., Bosworth C.F., Blumenthal E.Z., Girkin C., Wein-reb R.N. Visual function-specific perimetry for indirect comparison of different ganglion cell populations in glaucoma. Invest Ophthalmol Vis Sci 2000; 41(7): 1783-1790.

36. McKendrick A.M., Badcock D.R., Morgan W.H. Psychophysical measurement of neural adaptation abnormalities in mag-nocellular and parvocellular pathways in glaucoma. Invest Ophthalmol Vis Sci 2004; 45(6): 1846-1853.

37. Sample P.A., Medeiros F.A., Racette L., Pascual J.P. et al. Identifying glaucomatous vision loss with visual-function-specific perimetry in the diagnostic innovations in glaucoma study. Invest Ophthalmol Vis Sci 2006; 47(8): 3381-3389. doi: 10.1167/iovs.05-1546.

38. Yucel Y.H., Zhang Q., Gupta N., Kaufman P.L., Weinreb R.N. Loss of neurons in magnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma. Arch Ophthalmol 2000; 118(3): 378-384.

39. Yucel Y.H., Zhang Q., Weinreb R.N., Kaufman P.L., Gupta N. Atrophy of relay neurons in magno- and parvocellular layers in the lateral geniculate nucleus in experimental glaucoma. Invest Ophthalmol Vis Sci 2001; 42(13): 3216-3222.

40. Yucel Y.H., Zhang Q., Weinreb R.N., Kaufman P.L., Gupta N. Effects of retinal ganglion cell loss on magno-, parvo-, konio-cellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Progress in Retinal and Eye Research 2003; 22(4): 465-481.

41. Симакова И.Л., Волков В.В., Бойко Э.В. Создание метода периметрии с удвоенной пространственной частотой за рубежом и в России. Глаукома 2009; 8(2): 15. [Simakova I.L., Volkov V.V., Boiko E.V. Creation of the method of frequency-doubling technology perimetry: an international and Russian experience. Glaucoma 2009; 8(2): 15. (In Russ.)].

42. Симакова И.Л., Волков В.В., Бойко Э.В. Значение периметрии с удвоенной пространственной частотой в профилактике слепоты и инвалидности от глаукомы. Глаукома 2009; 8(3): 11. [Simakova I.L., Volkov V.V., Boiko E.V. Significance of frequency-doubling technology perimetry in prophylaxis of blindness and disablement from glaucoma. Glaucoma 2009; 8(3): 11. (In Russ.)].

43. Johnson C.A., Cioffi G.A., Van Buskirk E.M. Frequency doubling technology perimetry using a 24-2 stimulus presentation pattern. Optometry Vis Sci 1999; 76(8): 571-581.

44. Turpin A., McKendrick A.M., Johnson C.A., Vingrys A.J. Performance of efficient test procedures for frequency-doubling technology perimetry in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 2002; 43(3): 709-715.

45. Turpin A., McKendrick A.M., Johnson C.A., Vingrys A.J. Development of efficient threshold strategies for frequency doubling technology perimetry using computer simulation. Invest Ophthalmol Vis Sci 2002; 43(2): 322-331.

46. Burgansky-Eliash Z., Wollstein G., Patel A., Bilonick R.A., et al. Glaucoma detection with matrix and standard achromatic perimetry. Brit J Ophthalmol 2007; 91(7): 933-938. doi: 10.1136/bjo.2006.110437.

47. Casson R.J., James B. Effect of cataract on frequency doubling perimetry in the screening mode. J Glaucoma 2006; 15(1): 23-25.

48. Brusini P., Salvetat M.L., Zeppieri M., Parisi L. Frequency doubling technology perimetry with the Humphrey Matrix 30-2 test. J Glaucoma 2006; 15(2): 77-83.

49. Burnstein Y., Ellish N.J., Magbalon M., Higginbotham E.J. Comparison of frequency doubling perimetry with humphrey visual field analysis in a glaucoma practice. Am J Ophthalmol 2000; 129(3): 328-333.

50. Cello K.E., Nelson-Quigg J.M., Johnson C.A. Frequency doubling technology perimetry for detection of glaucomatous visual field loss. Am J Ophthalmol 2000; 129(3): 314-322.

51. Iester M., Sangermani C., De Feo F., Ungaro N., et al. Sector-based analysis of frequency doubling technology sensitivity and optic nerve head shape parameters. Eur J Ophthalmol 2007; 17(2): 223-229.

52. Wu L.L., Suzuki Y., Kunimatsu S., Araie M., Iwase A., Tomita G. Frequency doubling technology and confocal scanning ophthalmoscopic optic disc analysis in open-angle glaucoma with hemifield defects. J Glaucoma 2001; 10(4): 256-260.

53. Iwase A., Tomidokoro A., Araie M., Shirato S. et al. Performance of frequency-doubling technology perimetry in a population-based prevalence survey of glaucoma: the Tajimi study. Ophthalmology 2007; 114(1): 27-32. doi: 10.1016/j.ophtha.2006.06.041.

54. Mansberger S.L., Edmunds B., Johnson C.A., Kent K.J., Cioffi G.A. Community visual field screening: prevalence of follow-up and factors associated with follow-up of participants with abnormal frequency doubling perimetry technology results. Ophthalmic epidemiology 2007; 14(3): 134-140. doi: 10.1080/09286580601174060.

55. Racette L., Medeiros F.A., Zangwill L.M., Ng D., Weinreb R.N., Sample P.A. Diagnostic accuracy of the Matrix 24-2 and original N-30 frequency-doubling technology tests compared with standard automated perimetry. Invest Ophthalmol Vis Sci 2008; 49(3): 954-960. doi: 10.1167/iovs.07-0493.

56. Sakata L.M., Deleon-Ortega J., Arthur S.N., Monheit B.E., Girkin C.A. Detecting visual function abnormalities using the Swedish interactive threshold algorithm and matrix perimetry in eyes with glaucomatous appearance of the optic disc. Arch Ophthalmol 2007; 125(3): 340-345. doi: 10.1001/archopht.125.3.340.

57. Spry P.G., Hussin H.M., Sparrow J.M. Clinical evaluation of frequency doubling technology perimetry using the Humphrey Matrix 24-2 threshold strategy. Brit J Ophthalmol 2005; 89(8): 1031-1035. doi: 10.1136/bjo.2004.057778.

58. Horn F.K., Brenning A., Junemann A.G., Lausen B. Glaucoma detection with frequency doubling perimetry and short-wavelength perimetry. J Glaucoma 2007; 16(4): 363-371. doi: 10.1097/IJG.0b013e318032e4c2.


Дополнительные файлы

Для цитирования: Еричев В.П., Петров С.Ю., Козлова И.В., Макарова А.С., Рещикова В.С. Современные методы функциональной диагностики и мониторинга глаукомы. Часть 1. Периметрия как метод функциональных исследований. Национальный журнал глаукома. 2015;14(2):75-81.

For citation: Erichev V.P., Petrov S.Y., Kozlova I.V., Makarova A.S., Reshchikova V.S. Modern methods of functional diagnostics and monitoring of glaucoma. Part 1. Perimetry as a functional diagnostics method. National Journal glaucoma. 2015;14(2):75-81. (In Russ.)

Просмотров: 193

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)