Preview

Национальный журнал глаукома

Расширенный поиск

Возрастные изменения структуры и биомеханических свойств фиброзной оболочки глаза (обзор зарубежной литературы). Сообщение 1. Структурные изменения

Полный текст:

Аннотация

Роговица и склера формируют фиброзную оболочку глаза, способную противостоять внешним и внутренним воздействиям и поддерживать форму глазного яблока. Функционирование данных оболочек связано с их структурными особенностями и биомеханическими свойствами, изменение которых с возрастом сказывается на способности выполнять защитную и опорную функции и является прямой или косвенной причиной ряда глазных болезней. Структурные изменения фиброзной оболочки глаза связаны в первую очередь с нарушением организации волокон коллагена, эластина и протеогликанов, которые составляют основу стромы роговицы и склеры. Происходит изменение организации фибриллярных компонентов и увеличение количества поперечных сшивок. Структурные изменения соединительной ткани глаза отражаются на ее функциональном состоянии, в первую очередь на вязкоупругих свойствах роговицы и склеры. Общей тенденцией возрастных изменений фиброзной оболочки глаза, по данным зарубежных исследователей, является увеличение жесткости и снижение вязкоэластических показателей.

Об авторах

С. Ю. Петров
ФГБНУ «НИИ глазных болезней»
Россия


А. А. Антонов
ФГБНУ «НИИ глазных болезней»
Россия


И. А. Новиков
ФГБНУ «НИИ глазных болезней»
Россия


В. С. Рещикова
ФГБНУ «НИИ глазных болезней»
Россия


Н. А. Пахомова
ФГБНУ «НИИ глазных болезней»
Россия


Список литературы

1. Eysteinsson T., Jonasson F., Sasaki H., Arnarsson A. et al. Central corneal thickness, radius of the corneal curvature and intraocular pressure in normal subjects using non-contact techniques: Reykjavik Eye Study. Acta ophthalmologica Scandinavica 2002; 80(1): 11-15.

2. Liu J., Roberts C.J. Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis. J Cataract Refract Surg 2005; 31(1): 146-155. doi: 10.1016/j.jcrs.2004.09.031.

3. Liu J.H., Kripke D.F., Twa M.D., Hoffman R.E. et al. Twentyfour-hour pattern of intraocular pressure in the aging population. Invest Ophthalmol Vis Sci 1999; 40(12): 2912-2917.

4. Kaufmann C., Bachmann L.M., Robert Y.C., Thiel M.A. Ocular pulse amplitude in healthy subjects as measured by dynamic contour tonometry. Arch Ophthalmol 2006; 124(8): 1104-1108. doi: 10.1001/archopht.124.8.1104.

5. Komai Y., Ushiki T. The three-dimensional organization of collagen fibrils in the human cornea and sclera. Invest Ophthalmol Vis Sci 1991; 32(8): 2244-2258.

6. Shimmyo M., Orloff P.N. Corneal thickness and axial length. Am J Ophthalmol 2005; 139(3): 553-554. doi: 10.1016/j.ajo.2004.08.061.

7. Kampmeier J., Radt B., Birngruber R., Brinkmann R. Thermal and biomechanical parameters of porcine cornea. Cornea 2000; 19(3): 355-363.

8. Pinsky P.M., van der Heide D., Chernyak D. Computational modeling of mechanical anisotropy in the cornea and sclera. J Cataract Refract Surg 2005; 31(1): 136-145. doi: 10.1016/j.jcrs.2004.10.048.

9. Olsen T. On the calculation of power from curvature of the cornea. Brit J Ophthalmol 1986; 70(2): 152-154.

10. Boote C., Dennis S., Huang Y., Quantock A.J., Meek K.M. Lamellar orientation in human cornea in relation to mechanical properties. J Structural Biol 2005; 149(1): 1-6. doi: 10.1016/j.jsb.2004.08.009.

11. Olsen T.W., Sanderson S., Feng X., Hubbard W.C. Porcine sclera: thickness and surface area. Invest Ophthalmol Vis Sci 2002; 43(8): 2529-2532.

12. Haider K.M., Mickler C., Oliver D., Moya F.J., Cruz O.A., Davitt B.V. Age and racial variation in central corneal thickness of preschool and school-aged children. J Pediatric Ophthalmology and Strabismus 2008; 45(4): 227-233.

13. Aghaian E., Choe J.E., Lin S., Stamper R.L. Central corneal thickness of Caucasians, Chinese, Hispanics, Filipinos, African Americans, and Japanese in a glaucoma clinic. Ophthalmology 2004; 111(12): 2211-2219. doi: 10.1016/j.ophtha.2004.06.013.

14. Chen M.J., Liu Y.T., Tsai C.C., Chen Y.C., Chou C.K., Lee S.M. Relationship between central corneal thickness, refractive error, corneal curvature, anterior chamber depth and axial length. J Chinese Medical Association: JCMA 2009; 72(3): 133-137. doi: 10.1016/S1726-4901(09)70038-3.

15. Harper C.L., Boulton M.E., Bennett D., Marcyniuk B. et al. Diurnal variations in human corneal thickness. Br J Ophthalmol 1996; 80(12): 1068-1072.

16. Dubbelman M., Weeber H.A., van der Heijde R.G., VolkerDieben H.J. Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography. Acta Ophthalmol Scandinavica 2002; 80(4): 379-383.

17. Olsen T.W., Aaberg S.Y., Geroski D.H., Edelhauser H.F. Human sclera: thickness and surface area. Am J Ophthalmol 1998; 125(2): 237-241.

18. Doughty M.J., Jonuscheit S. An assessment of regional differences in corneal thickness in normal human eyes, using the Orbscan II or ultrasound pachymetry. Optometry 2007; 78(4): 181-190. doi: 10.1016/j.optm.2006.08.018.

19. Watson P.G., Young R.D. Scleral structure, organisation and disease. A review. Exper Eye Res 2004; 78(3): 609-623.

20. Brown C.T., Vural M., Johnson M., Trinkaus-Randall V. Agerelated changes of scleral hydration and sulfated glycosaminoglycans. Mechanisms of Ageing and Development 1994; 77(2): 97-107.

21. Vannas S., Teir H. Observations on structures and age changes in the human sclera. Acta ophthalmologica 1960; 38: 268-279.

22. Rada J.A., Achen V.R., Penugonda S., Schmidt R.W., Mount B.A. Proteoglycan composition in the human sclera during growth and aging. Invest Ophthalmol Vis Sci 2000; 41(7): 1639-1648.

23. Kanai A., Kaufman H.E. Electron microscopic studies of corneal stroma: aging changes of collagen fibers. Annals of Ophthalmology 1973; 5(3): 285-287 passim.

24. Malik N.S., Moss S.J., Ahmed N., Furth A.J., Wall R.S., Meek K.M. Ageing of the human corneal stroma: structural and biochemical changes. Biochimica et biophysica Acta 1992; 1138(3): 222-228.

25. Scott J.E., Orford C.R., Hughes E.W. Proteoglycan-collagen arrangements in developing rat tail tendon. An electron microscopical and biochemical investigation. Biochemical J 1981; 195(3): 573-581.

26. Chakravarti S., Zhang G., Chervoneva I., Roberts L., Birk D.E. Collagen fibril assembly during postnatal development and dysfunctional regulation in the lumican-deficient murine cornea. Developmental dynamics: an official publication of the American Association of Anatomists 2006; 235(9): 2493-2506. doi: 10.1002/dvdy.20868.

27. Koga T., Inatani M., Hirata A., Inomata Y. et al. Expression of a chondroitin sulfate proteoglycan, versican (PG-M), during development of rat cornea. Curr Eye Res 2005; 30(6): 455-463. doi: 10.1080/02713680590959376.

28. Keeley F.W., Morin J.D., Vesely S. Characterization of collagen from normal human sclera. Exper Eye Res 1984; 39(5): 533-542.

29. Lee P.P., Walt J.W., Rosenblatt L.C., Siegartel L.R., Stern L.S., Glaucoma Care Study G. Association between intraocular pressure variation and glaucoma progression: data from a United States chart review. Am J Ophthalmol 2007; 144(6): 901-907. doi: 10.1016/j.ajo.2007.07.040.

30. Lee R.E., Davison P.F. The collagens of the developing bovine cornea. Exper Eye Res 1984; 39(5): 639-652.

31. Ben-Zvi A., Rodrigues M.M., Krachmer J.H., Fujikawa L.S. Immunohistochemical characterization of extracellular matrix in the developing human cornea. Curr Eye Res 1986; 5(2): 105-117.

32. Drubaix I., Legeais J.M., Malek-Chehire N., Savoldelli M. et al. Collagen synthesized in fluorocarbon polymer implant in the rabbit cornea. Exper Eye Res 1996; 62(4): 367-376. doi: 10.1006/exer.1996.0042.

33. Rucklidge G.J., Milne G., McGaw B.A., Milne E., Robins S.P. Turnover rates of different collagen types measured by isotope ratio mass spectrometry. Biochimica et Biophysica Acta 1992; 1156(1): 57-61.

34. Ihanamaki T., Salminen H., Saamanen A.M., Pelliniemi L.J. et al. Age-dependent changes in the expression of matrix components in the mouse eye. Exper Eye Res 2001; 72(4): 423-431. doi: 10.1006/exer.2000.0972.

35. Sorsby A., Wilcox K., Ham D. The calcium content of the sclerotic and its variation with age. Brit J Ophthalmol 1935; 19(6): 327-337.

36. Manschot W.A. Senile scleral plaques and senile scleromalacia. Brit J Ophthalmol 1978; 62(6): 376-380.

37. Hogan M.J., Alvarado J. Ultrastructure of the deep corneolimbal region. Documenta Ophthalmologica Advances in Ophthalmology 1969; 26: 9-30.

38. Hirano K., Nakamura M., Kobayashi M., Kobayashi K., Hoshino T., Awaya S. Long-spacing collagen in the human corneal stroma. Japan J Ophthalmol 1993; 37(2): 148-155.

39. Yan D., McPheeters S., Johnson G., Utzinger U., Vande Geest J.P. Microstructural differences in the human posterior sclera as a function of age and race. Invest Ophthalmol Vis Sci 2011; 52(2): 821-829. doi: 10.1167/iovs.09-4651.

40. Girard M.J., Suh J.K., Bottlang M., Burgoyne C.F., Downs J.C. Scleral biomechanics in the aging monkey eye. Invest Ophthalmol Vis Sci 2009; 50(11): 5226-5237. doi: 10.1167/iovs.08-3363.

41. Sheppard J., Hayes S., Boote C., Votruba M., Meek K.M. Changes in corneal collagen architecture during mouse postnatal development. Invest Ophthalmol Vis Sci 2010; 51(6): 2936-2942. doi: 10.1167/iovs.09-4612.

42. Boote C., Hayes S., Young R.D., Kamma-Lorger C.S. et al. Ultrastructural changes in the retinopathy, globe enlarged (rge) chick cornea. J Structural Biol 2009; 166(2): 195-204. doi: 10.1016/j.jsb.2009.01.009.

43. McBrien N.A., Cornell L.M., Gentle A. Structural and ultra-structural changes to the sclera in a mammalian model of high myopia. Invest Ophthalmol Vis Sci 2001; 42(10): 2179-2187.

44. McBrien N.A., Gentle A. Role of the sclera in the development and pathological complications of myopia. Progress in Retinal and Eye Research 2003; 22(3): 307-338.

45. Daxer A., Misof K., Grabner B., Ettl A., Fratzl P. Collagen fibrils in the human corneal stroma: structure and aging. Invest Ophthalmol Vis Sci 1998; 39(3): 644-648.

46. Bailey A.J. Structure, function and ageing of the collagens of the eye. Eye 1987; 1(Pt 2): 175-183. doi: 10.1038/eye.1987.34.

47. Tanaka S., Avigad G., Brodsky B., Eikenberry E.F. Glyca-tion induces expansion of the molecular packing of collagen. J Molecular Biol 1988; 203(2): 495-505.


Для цитирования:


Петров С.Ю., Антонов А.А., Новиков И.А., Рещикова В.С., Пахомова Н.А. Возрастные изменения структуры и биомеханических свойств фиброзной оболочки глаза (обзор зарубежной литературы). Сообщение 1. Структурные изменения. Национальный журнал глаукома. 2015;14(3):80-86.

For citation:


Petrov S.Y., Antonov A.A., Novikov I.A., Reshchikova V.S., Pahomova N.A. Age-related changes in the structural and biomechanical properties of the fibrous membrane of the eye (review of foreign literature). Report 1. Structural changes. National Journal glaucoma. 2015;14(3):80-86. (In Russ.)

Просмотров: 209


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)