Возрастные изменения структуры и биомеханических свойств фиброзной оболочки глаза (обзор зарубежной литературы). Сообщение 2. Биомеханические изменения

Полный текст:


Аннотация

Роговица и склера формируют фиброзную оболочку глаза, способную противостоять внешним и внутренним воздействиям и поддерживать форму глазного яблока. Функционирование данных оболочек связано с их структурными особенностями и биомеханическими свойствами, изменение которых с возрастом сказывается на способности выполнять защитную и опорную функции и является прямой или косвенной причиной ряда глазных болезней. Структурные изменения фиброзной оболочки глаза связаны в первую очередь с нарушением организации волокон коллагена, эластина и протеогликанов, которые составляют основу стромы роговицы и склеры. Происходит изменение организации фибриллярных компонентов и увеличение количества поперечных сшивок. Структурные изменения соединительной ткани глаза отражаются на ее функциональном состоянии, в первую очередь на вязкоупругих свойствах роговицы и склеры. Общей тенденцией возрастных изменений фиброзной оболочки глаза, по данным зарубежных исследователей, является увеличение жесткости и снижение вязкоэластических показателей.

Об авторах

С. Ю. Петров
ФГБНУ «НИИ глазных болезней»
Россия


А. А. Антонов
ФГБНУ «НИИ глазных болезней»
Россия


И. А. Новиков
ФГБНУ «НИИ глазных болезней»
Россия


В. С. Рещикова
ФГБНУ «НИИ глазных болезней»
Россия


Н. А. Пахомова
ФГБНУ «НИИ глазных болезней»
Россия


Список литературы

1. Orssengo G.J., Pye D.C. Determination of the true intraocular pressure and modulus of elasticity of the human cornea in vivo. Bulletin of Mathematical Biology 1999; 61(3):551-572.

2. Swarbrick H.A. Orthokeratology review and update. Clin Exper Optometry: J of the Australian Optometrical Association 2006; 89(3):124-143. doi: 10.1111/j.1444-0938.2006.00044.x.

3. Uchio E., Ohno S., Kudoh J., Aoki K., Kisielewicz L.T. Simulation model of an eyeball based on finite element analysis on a supercomputer. Brit J Ophthalmol 1999; 83(10):1106-1111.

4. Alastrue V., Calvo B., Pena E., Doblare M. Biomechanical modeling of refractive corneal surgery. J Biomechanical Engineering 2006; 128(1):150-160.

5. Rada J.A., Shelton S., Norton T.T. The sclera and myopia. Exper Eye Res 2006; 82(2):185-200. doi: 10.1016/j.exer.2005.08.009.

6. Elsheikh A., Wang D. Numerical modelling of corneal biomechanical behaviour. Computer Methods in Biomechanics and Biomedical Engineering 2007; 10(2):85-95. doi: 10.1080/10255840600976013.

7. Eilaghi A., Flanagan J.G., Simmons C.A., Ethier C.R. Effects of scleral stiffness properties on optic nerve head biomechanics. Annals of Biomedical Engineering 2010; 38(4):1586-1592. doi: 10.1007/s10439-009-9879-7.

8. Sigal I.A., Flanagan J.G., Ethier C.R. Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci 2005; 46(11):4189-4199. doi: 10.1167/iovs.05-0541.

9. Sigal I.A., Flanagan J.G., Tertinegg I., Ethier C.R. Finite element modeling of optic nerve head biomechanics. Invest Ophthalmol Vis Sci 2004; 45(12):4378-4387. doi: 10.1167/iovs.04-0133.

10. Boyce B.L., Grazier J.M., Jones R.E., Nguyen T.D. Full-field deformation of bovine cornea under constrained inflation conditions. Biomaterials 2008; 29(28):3896-3904. doi:10.1016/j.biomaterials.2008.06.011.

11. Elsheikh A., Alhasso D., Rama P. Assessment of the epithelium’s contribution to corneal biomechanics. Exper Eye Res 2008; 86(2):445-451. doi: 10.1016/j.exer.2007.12.002.

12. Komai Y., Ushiki T. The three-dimensional organization of collagen fibrils in the human cornea and sclera. Invest Ophthalmol Vis Sci 1991; 32(8):2244-2258.

13. Meek K.M., Fullwood N.J. Corneal and scleral collagens--a microscopist’s perspective. Micron 2001; 32(3):261-272.

14. Muller L.J., Pels E., Schurmans L.R., Vrensen G.F. A new threedimensional model of the organization of proteoglycans and collagen fibrils in the human corneal stroma. Exper Eye Res 2004; 78(3):493-501.

15. Parry D.A., Craig A.S. Electron microscope evidence for an 80 A unit in collagen fibrils. Nature 1979; 282(5735):213-215.

16. Boote C., Dennis S., Huang Y., Quantock A.J., Meek K.M. Lamellar orientation in human cornea in relation to mechanical properties. J of Structural Biology 2005; 149(1):1-6. doi: 10.1016/j.jsb.2004.08.009.

17. Fullwood N.J., Martin F.L., Bentley A.J., Lee J.P., Lee S.J. Imaging sclera with hard X-ray microscopy. Micron 2011; 42(5):506-511. doi: 10.1016/j.micron.2011.01.012.

18. Boote C., Dennis S., Newton R.H., Puri H., Meek K.M. Collagen fibrils appear more closely packed in the prepupillary cornea: optical and biomechanical implications. Invest Ophthalmol Vis Sci 2003; 44(7):2941-2948.

19. Daxer A., Fratzl P. Collagen fibril orientation in the human corneal stroma and its implication in keratoconus. Invest Ophthalmol Vis Sci 1997; 38(1):121-129.

20. Aghamohammadzadeh H., Newton R.H., Meek K.M. X-ray scattering used to map the preferred collagen orientation in the human cornea and limbus. Structure 2004; 12(2):249-256. doi: 10.1016/j.str.2004.01.002.

21. Boote C., Hayes S., Abahussin M., Meek K.M. Mapping collagen organization in the human cornea: left and right eyes are structurally distinct. Invest Ophthalmol Vis Sci 2006; 47(3):901-908. doi: 10.1167/iovs.05-0893.

22. Han M., Giese G., Bille J. Second harmonic generation imaging of collagen fibrils in cornea and sclera. Optics express 2005; 13(15):5791-5797.

23. Quigley H.A., Dorman-Pease M.E., Brown A.E. Quantitative study of collagen and elastin of the optic nerve head and sclera in human and experimental monkey glaucoma. Curr Eye Res 1991; 10(9):877-888.

24. Meek K.M., Boote C. The organization of collagen in the corneal stroma. Exper Eye Res 2004; 78(3):503-512.

25. Downs J.C., Ensor M.E., Bellezza A.J., Thompson H.W., Hart R.T., Burgoyne C.F. Posterior scleral thickness in perfusion-fixed normal and early-glaucoma monkey eyes. Invest Ophthalmol Vis Sci 2001; 42(13):3202-3208.

26. Eilaghi A., Flanagan J.G., Tertinegg I., Simmons C.A., Wayne Brodland G., Ross Ethier C. Biaxial mechanical testing of human sclera. J Biomechanics 2010; 43(9):1696-1701. doi: 10.1016/j.jbiomech.2010.02.031.

27. Elsheikh A., Geraghty B., Alhasso D., Knappett J., Campanelli M., Rama P. Regional variation in the biomechanical properties of the human sclera. Exper Eye Res 2010; 90(5):624-633. doi: 10.1016/j.exer.2010.02.010.

28. Girard M.J., Downs J.C., Bottlang M., Burgoyne C.F., Suh J.K. Peripapillary and posterior scleral mechanics--part II: experimental and inverse finite element characterization. J of Biomechanical Engineering 2009; 131(5):051012. doi: 10.1115/1.3113683.

29. Olsen T.W., Aaberg S.Y., Geroski D.H., Edelhauser H.F. Human sclera: thickness and surface area. Am J Ophthalmol 1998; 125(2):237-241.

30. Norman R.E., Flanagan J.G., Rausch S.M., Sigal I.A. et al. Dimensions of the human sclera: Thickness measurement and regional changes with axial length. Exper Eye Res 2010; 90(2):277-284. doi: 10.1016/j.exer.2009.11.001.

31. Grant C.A., Thomson N.H., Savage M.D., Woon H.W., Greig D. Surface characterisation and biomechanical analysis of the sclera by atomic force microscopy. J of the Mechanical Behavior of Biomedical Materials 2011; 4(4):535-540. doi: 10.1016/j. jmbbm.2010.12.011.

32. Nyquist G.W. Rheology of the cornea: experimental techniques and results. Exper Eye Res 1968; 7(2):183-188.

33. Elsheikh A., Ross S., Alhasso D., Rama P. Numerical study of the effect of corneal layered structure on ocular biomechanics. Curr Eye Res 2009; 34(1):26-35. doi: 10.1080/02713680802535263.

34. Battaglioli J.L., Kamm R.D. Measurements of the compressive properties of scleral tissue. Invest Ophthalmol Vis Sci 1984; 25(1):59-65.

35. Greene P.R., McMahon T.A. Scleral creep vs. temperature and pressure in vitro. Exper Eye Res 1979; 29(5):527-537.

36. Phillips J.R., McBrien N.A. Pressure-induced changes in axial eye length of chick and tree shrew: significance of myofibroblasts in the sclera. Invest Ophthalmol Vis Sci 2004; 45(3):758-763.

37. Bisplinghoff J.A., McNally C., Manoogian S.J., Duma S.M. Dynamic material properties of the human sclera. J Biomechanics 2009; 42(10):1493-1497. doi: 10.1016/j.jbiomech.2009.03.043.

38. Jue B., Maurice D.M. The mechanical properties of the rabbit and human cornea. Journal of biomechanics 1986; 19(10):847-853.

39. Kling S., Remon L., Perez-Escudero A., Merayo-Lloves J., Marcos S. Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments. Invest Ophthalmol Vis Sci 2010; 51(8):3961-3968. doi: 10.1167/iovs.09-4536.

40. Pierscionek B.K., Asejczyk-Widlicka M., Schachar R.A. The effect of changing intraocular pressure on the corneal and scleral curvatures in the fresh porcine eye. Brit J Ophthalmol 2007; 91(6):801-803. doi: 10.1136/bjo.2006.110221.

41. Elsheikh A., Anderson K. Comparative study of corneal strip extensometry and inflation tests. Journal of the Royal Society, Interface / the Royal Society 2005; 2(3):177-185. doi: 10.1098/rsif.2005.0034.

42. Woo S.L., Kobayashi A.S., Schlegel W.A., Lawrence C. Nonlinear material properties of intact cornea and sclera. Exper Eye Res 1972; 14(1):29-39.

43. Greene P.R. Stress-strain behavior for curved exponential strips. Bulletin of Mathematical Biology 1985; 47(6):757-764.

44. Lari D.R., Schultz D.S., Wang A.S., Lee O.T., Stewart J.M. Scleral mechanics: comparing whole globe inflation and uniaxial testing. Exper Eye Res 2012; 94(1):128-135. doi: 10.1016/j.exer.2011.11.017.

45. Nash I.S., Greene P.R., Foster C.S. Comparison of mechanical properties of keratoconus and normal corneas. Exper Eye Res 1982; 35(5):413-424.

46. Jayasuriya A.C., Ghosh S., Scheinbeim J.I., Lubkin V., Bennett G., Kramer P. A study of piezoelectric and mechanical anisotropies of the human cornea. Biosensors & Bioelectronics 2003; 18(4): 381-387.

47. Cheng S., Clarke E.C., Bilston L.E. The effects of preconditioning strain on measured tissue properties. J Biomechanics 2009; 42(9):1360-1362. doi: 10.1016/j.jbiomech.2009.03.023.

48. Clark J.I. Order and disorder in the transparent media of the eye. Exper Eye Res 2004; 78(3):427-432.

49. Wollensak G., Spoerl E., Seiler T. Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking. J Cataract Refract Surg 2003; 29(9):1780-1785.

50. Buzard K.A. Introduction to biomechanics of the cornea. Refractive & Corneal Surgery 1992; 8(2):127-138.

51. Palko J.R., Pan X., Liu J. Dynamic testing of regional viscoelastic behavior of canine sclera. Exper Eye Res 2011; 93(6):825-832. doi: 10.1016/j.exer.2011.09.018.

52. Downs J.C., Suh J.K., Thomas K.A., Bellezza A.J., Hart R.T., Burgoyne C.F. Viscoelastic material properties of the peripapillary sclera in normal and early-glaucoma monkey eyes. Invest Ophthalmol Vis Sci 2005; 46(2):540-546. doi: 10.1167/iovs.04-0114.

53. Girard M., Suh J.K., Hart R.T., Burgoyne C.F., Downs J.C. Effects of storage time on the mechanical properties of rabbit peripapillary sclera after enucleation. Curr Eye Res 2007; 32(5):465-470. doi: 10.1080/02713680701273792.

54. Anderson K., El-Sheikh A., Newson T. Application of structural analysis to the mechanical behaviour of the cornea. Journal of the Royal Society, Interface / the Royal Society 2004; 1(1):3-15. doi: 10.1098/rsif.2004.0002.

55. Hjortdal J.O. Regional elastic performance of the human cornea. J Biomechanics 1996; 29(7):931-942.

56. Boote C., Hayes S., Young R.D., Kamma-Lorger C.S. et al. Ultra-structural changes in the retinopathy, globe enlarged (rge) chick cornea. Journal of Structural Biology 2009; 166(2):195-204. doi: 10.1016/j.jsb.2009.01.009.

57. Elsheikh A., Wang D., Brown M., Rama P., Campanelli M., Pye D. Assessment of corneal biomechanical properties and their variation with age. Curr Eye Res 2007; 32(1):11-19. doi: 10.1080/02713680601077145.

58. Myers K.M., Coudrillier B., Boyce B.L., Nguyen T.D. The inflation response of the posterior bovine sclera. Acta biomaterialia 2010; 6(11):4327-4335. doi: 10.1016/j.actbio.2010.06.007.

59. Girard M.J., Suh J.K., Bottlang M., Burgoyne C.F., Downs J.C. Scleral biomechanics in the aging monkey eye. Invest Ophthalmol Vis Sci 2009; 50(11):5226-5237. doi: 10.1167/iovs.08-3363.

60. Smolek M. Elasticity of the bovine sclera measured with real-time holographic interferometry. Am J Optometry and Physiological Optics 1988; 65(8):653-660.

61. Shin T.J., Vito R.P., Johnson L.W., McCarey B.E. The distribution of strain in the human cornea. J Biomechanics 1997; 30(5): 497-503.

62. Myers K.M., Cone F.E., Quigley H.A., Gelman S., Pease M.E., Nguyen T.D. The in vitro inflation response of mouse sclera. Exper Eye Res 2010; 91(6):866-875. doi: 10.1016/j.exer.2010.09.009.

63. Girard M.J., Suh J.K., Bottlang M., Burgoyne C.F., Downs J.C. Biomechanical changes in the sclera of monkey eyes exposed to chronic IOP elevations. Invest Ophthalmol Vis Sci 2011; 52(8):5656-5669. doi: 10.1167/iovs.10-6927.

64. Sorsby A., Wilcox K., Ham D. The calcium content of the sclerotic and its variation with age. Brit J Ophthalmol 1935; 19(6): 327-337.

65. Brubaker R.F., Ezekiel S., Chin L., Young L., Johnson S.A., Beeler G.W. The stress-strain behavior of the corneoscleral envelope of the eye. I. Development of a system for making in vivo measurements using optical interferometry. Exper Eye Res 1975; 21(1):37-46.

66. Brubaker R.F., Johnson S.A., Beeler G.W. The stress-strain behavior of the corneoscleral envelope of the eye. II. In vivo measurements in rhesus monkey eyes. Exper Eye Res 1977; 24(5):425-435.

67. Sjontoft E., Edmund C. In vivo determination of Young’s modulus for the human cornea. Bulletin of Mathematical Biology 1987; 49(2):217-232.

68. Luce D.A. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg 2005; 31(1):156-162. doi: 10.1016/j.jcrs.2004.10.044.

69. Dupps W.J., Jr. Hysteresis: new mechanospeak for the ophthalmologist. J Cataract Refract Surg 2007; 33(9):1499-1501. doi: 10.1016/j.jcrs.2007.07.008.

70. Kling S., Bekesi N., Dorronsoro C., Pascual D., Marcos S. Corneal viscoelastic properties from finite-element analysis of in vivo airpuff deformation. PloS one 2014; 9(8):e104904. doi: 10.1371/journal.pone.0104904.

71. Nguyen T.M., Aubry J.F., Touboul D., Fink M. et al. Monitoring of cornea elastic properties changes during UV-A/riboflavin-induced corneal collagen cross-linking using supersonic shear wave imaging: a pilot study. Invest Ophthalmol Vis Sci 2012; 53(9):5948-5954. doi: 10.1167/iovs.11-9142.

72. He X., Liu J. A quantitative ultrasonic spectroscopy method for noninvasive determination of corneal biomechanical properties. Invest Ophthalmol Vis Sci 2009; 50(11):5148-5154. doi: 10.1167/iovs.09-3439.

73. Hollman K.W., Emelianov S.Y., Neiss J.H., Jotyan G. et al. Strain imaging of corneal tissue with an ultrasound elasticity microscope. Cornea 2002; 21(1):68-73.

74. Hollman K.W., Shtein R.M., Tripathy S., Kim K. Using an ultrasound elasticity microscope to map three-dimensional strain in a porcine cornea. Ultrasound in Medicine & Biology 2013; 39(8):1451-1459. doi: 10.1016/j.ultrasmedbio.2013.02.465.

75. Manapuram R.K., Aglyamov S.R., Monediado F.M., Mashiatul-la M. et al. In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography. Journal of Biomedical Optics 2012; 17(10):100501. doi: 10.1117/1.JB0.17.10.100501.

76. Nahas A., Bauer M., Roux S., Boccara A.C. 3D static elastography at the micrometer scale using Full Field OCT. Biomedical Optics Express 2013; 4(10):2138-2149. doi: 10.1364/B0E.4.002138.

77. Wang S., Larin K.V. Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics. Optics letters 2014; 39(1):41-44. doi: 10.1364/OL.39.000041.

78. Albon J., Purslow P.P., Karwatowski W.S., Easty D.L. Age related compliance of the lamina cribrosa in human eyes. Brit J Ophthalmol 2000; 84(3):318-323.

79. Krag S., Olsen T., Andreassen T.T. Biomechanical characteristics of the human anterior lens capsule in relation to age. Invest Ophthalmol Vis Sci 1997; 38(2):357-363.

80. Burgoyne C.F., Downs J.C. Premise and prediction-how optic nerve head biomechanics underlies the susceptibility and clinical behavior of the aged optic nerve head. J Glaucoma 2008; 17(4):318-328. doi: 10.1097/IJG.0b013e31815a343b.

81. Elsheikh A., Wang D., Rama P., Campanelli M., Garway-Heath D. Experimental assessment of human corneal hysteresis. Curr Eye Res 2008; 33(3):205-213. doi: 10.1080/02713680701882519.

82. Wollensak G., Iomdina E. Crosslinking of scleral collagen in the rabbit using glyceraldehyde. J Cataract Refract Surg 2008; 34(4):651-656. doi: 10.1016/j.jcrs.2007.12.030.

83. Avetisov E.S., Savitskaya N.F., Vinetskaya M.I., Iomdina E.N. A study of biochemical and biomechanical qualities of normal and myopic eye sclera in humans of different age groups. Metabolic, Pediatric, and Systemic Ophthalmology 1983; 7(4):183-188.

84. Friberg T.R., Lace J.W. A comparison of the elastic properties of human choroid and sclera. Exper Eye Res 1988; 47(3):429-436.

85. Coudrillier B., Tian J., Alexander S., Myers K.M., Quigley H.A., Nguyen T.D. Biomechanics of the human posterior sclera: age- and glaucoma-related changes measured using inflation testing. Invest Ophthalmol Vis Sci 2012; 53(4):1714-1728. doi: 10.1167/iovs.11-8009.

86. Fazio M.A., Grytz R., Morris J.S., Bruno L. et al. Age-related changes in human peripapillary scleral strain. Biomechanics and Modeling in Mechanobiology 2014; 13(3):551-563. doi: 10.1007/s10237-013-0517-9.

87. Geraghty B., Jones S.W., Rama P., Akhtar R., Elsheikh A. Age-related variations in the biomechanical properties of human sclera. Journal of the Mechanical Behavior of Biomedical Materials 2012; 16:181-191. doi: 10.1016/j.jmbbm.2012.10.011.


Дополнительные файлы

Для цитирования: Петров С.Ю., Антонов А.А., Новиков И.А., Рещикова В.С., Пахомова Н.А. Возрастные изменения структуры и биомеханических свойств фиброзной оболочки глаза (обзор зарубежной литературы). Сообщение 2. Биомеханические изменения. Национальный журнал глаукома. 2015;14(4):88-100.

For citation: Petrov S.Y., Antonov A.A., Novikov I.A., Reshchikova V.S., Pahomova N.A. Age-related changes in the structural and biomechanical properties of the fibrous membrane of the eye (review of foreign literature). Report 2. Biomechanical changes. National Journal glaucoma. 2015;14(4):88-100. (In Russ.)

Просмотров: 151

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-4104 (Print)
ISSN 2311-6862 (Online)